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Abstract

Micromechanics analyses of the dominant energy-dissipating mechanisms responsible for the resistance to catastrophic fracture

of the aragonitic shell of the giant Queen conch, Strombus gigas, are presented. The crossed lamellar microstructure of the shell is

associated with a work of fracture that is three orders of magnitude higher than that of non-biogenic aragonite [J. Mater. Sci. 6

(1996) 6583]. Previous energy-based models predict that multiple ‘‘tunnel’’ cracks in the weak layers of the shell account for a factor

of 20 of this increase in fracture energy. We show that the additional factor of a300 results from the synergy between the tunnel

cracking and crack bridging mechanisms, analogous to multiple energy dissipating mechanisms observed in brittle matrix com-

posites. The theoretical models demonstrate that the microstructure of the shell of S. gigas is such that potential cracks evolve

towards the desirable non-catastrophic ACK (Aveston–Cooper–Kelly) [Properties of fiber composites, Conference Proceedings 15,

National Physical Laboratory, IPC Science and Technology Press, 1971] limit, a situation in which all bridging ligaments remain

intact along the crack wakes. Load–deflection experiments at temperatures ranging from )120 to 200 �C suggest that a glass

transition occurs within the organic (proteinaceous) phase at �175 �C, and demonstrate the critical role that this organic ‘‘matrix’’

plays in the resistance of the shell to catastrophic crack propagation.

� 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The aragonitic shell of the giant pink Queen conch,

Strombus gigas, is characterized by high toughness and

moderate strength, a direct result of an exquisite mic-
roarchitecture that contains structure over five length

scales (Fig. 1). The coarsest structures are the inner,

middle, and outer layers, which are oriented in either

‘‘weak’’ or ‘‘tough’’ orientations with respect to the di-

rection of potential catastrophic crack propagation.

Sequential cracking of the weak and strong layers of the
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shell occur during crack propagation, and it is necessary

to partition the energy dissipated during fracture into

these two processes; this is done here through quanti-

tative micromechanics modeling. The theoretical pre-

dictions have been corroborated by experimental
fracture toughness and acoustic emission data, as well as

in situ crack propagation studies that guided the theo-

retical developments [4–8].

Multiple ‘‘tunnel’’ cracking emanating from large

flaws in the weaker layers was theoretically modeled in

our earlier work [5,6], and characterizes the mechanical

response for relatively low loads. However, this type of

cracking accounts for only a relatively small fraction of
the mechanical energy required to completely fracture

the shell. A much larger portion of the energy dissipated
ll rights reserved.
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Fig. 1. (a) Schematic drawing of the microstructure of the conch shell. The bulk of the shell in mature animals contain three layers, as depicted here.

Each layer contains first-order, second-order and third-order lamellae. The twinned third-order lamellae are not shown in this drawing, which

emphasizes the �90� orientation of second-order lamellae within adjacent first-order lamellae. (Second-order lamellae are only shown for two first-

order lamellae in the middle layer.) The twinned third-order lamellae are the basic building blocks of the structure [3]. The first-order interfaces are

weak and favor multiple microcracking in the inner and outer (weak) layers, whereas second-order interfaces favor crack deflection in the middle

(tough) layer, as indicated by the bold arrow. The crack tip coordinate system shown by the less-prominent arrows (x; y) appears again in Fig. 9. The

layers are 0.5–2 mm thick; the first-order lamellae are 5–60 lm thick and many lm wide; the second-order lamellae 5–30 lm thick and 5–60 lm wide;

and the third-order lamellae 60–130 nm thick and 100 nm wide. All third-order lamellae are surrounded by sheaths of protein; similar proteinaceous

material some 10–320 nm in thickness comprise the interfaces separating second-order and first-order lamellae, as well as the layer interfaces [3];

(b) and (c) are SEM micrographs; the layer structure is easily discerned by the roughness resulting from cracks propagating parallel or perpendicular

to first-order lamellar interphases in the middle layer. The rough/smooth transition in adjacent first-order lamellae is shown at high magnification in

(c); finally, (d) is a TEMmicrograph of a second-order lamella taken in an ‘‘end-on’’ orientation. Individual twinned third-order lamellae are revealed

by diffraction contrast; the striped vertical features are twin boundaries. Although not apparent in this image, each third-order lamella is encased in a

proteinaceous sheath; globular protein is also present [3].
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during fracture of the shell is associated with crack
bridging and microcracking in the ‘‘tougher’’ layer; this

enhanced toughening arises from the �45� orientation

of the second-order lamellae in that layer (Fig. 1). This

paper presents: (i) further analysis of multiple tunnel

cracking that considers the possibility of growth of small

flaws in the weaker layer, (ii) a micromechanics-based

crack bridging model for the tougher layer, (iii) the use

of this model in a non-linear bridged-crack fracture
mechanics analysis that successfully predicts the essence

of the experimental load–deflection curves, and (iv) the

results of four point bend tests in a temperature con-

trolled chamber at temperatures ranging from )120 to

200 �C, which illustrate the critical role played by the

proteinaceous interphase. The work of fracture, defined

as the total energy dissipated in the fracture process,
divided by the fracture surface area, is an important
parameter that will be referred to in subsequent

discussion.
2. Multiple cracking in the ‘‘weak’’ layer

Enhanced energy dissipation by multiple crack for-

mation during fracture of unnotched samples was con-
sidered in our earlier work [5,6]. Specifically, we

modeled the slightly simplified plane strain configura-

tion of a two-layer composite subjected to a prescribed

applied strain e (Fig. 2). The ‘‘tough’’ and ‘‘weak’’ layers

are assumed to be of equal thicknesses, t1 ¼ t2 ¼ w=2,
and to have equal Young’s modulus, E and Poisson’s

ratio, m. The fracture toughness of these layers are Keff
c1



Fig. 2. Simplified two-layer composite with microcracks of average

crack distance a. The lower portion of the figure shows the represen-

tative unit cell with a single microcrack for the finite element model.

The applied strain (e) is realized as a prescribed displacement,

u ¼ e � a=2.

(a)

(b)

Fig. 3. Strain-energy based cracking criterion (a) in comparison to the

stress-based cracking criterion (b) for tunnel crack propagation in a

weak layer. The stress-based criterion describes a situation when cracks

are initiated in the weak layer from small pre-existing surface flaws.

The strain-energy criterion applies when cracks can grow from large

pre-existing flaws. The pre-existing flaws are represented by the light

regions. The direction of crack tunneling along the specimen thickness

is indicated by the small arrows.
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and Kc2, respectively, with Keff
c1 > Kc2. Kc2 represents the

fracture toughness of the proteinaceous interfaces be-

tween first-order aragonitic lamellae, whereas the larger

Keff
c1 represents an effective initiation toughness associ-

ated with the extension of the tunnel cracks into the

tough layer at higher loads.

As detailed in the next section, Kc2 can be related to

the energy required to multiply crack the weak layer as a

result of the tunneling across its width of relatively large
flaws (steady-state crack propagation associated with a

crack driving force that depends on t1=t2 but not on the

length of the tunnel crack [9]), or to the energy required

to produce the multiple cracking from relatively small

surface flaws that grow to the interface between the

strong and weak layers and concomitantly across the

layer width (propagation whose driving force depends

on the initial length of surface cracks).
It is assumed that cleavage of the proteinaceous

interfaces in both layers occurs in a brittle fashion at

a critical value of the crack–tip energy release rate,

J intc ¼ 2cint, where cint is the surface energy. The Irwin

relations between the crack–tip parameters is

J intc ¼ K2
c2=E

0 ¼ 2cint, with E0 ¼ E=ð1� m2Þ. However,

the total energy release rate associated with crack ex-

tension in the tough layer is given by J ¼ J intc þ Jb,
where Jb ¼

R Du0
0

rðDuÞdðDuÞ. rðDuÞ, the crack surface

traction that resists the crack opening displacement Du,
is operative up to the critical crack opening displace-

ment Du0, or alternatively, up to a limiting ligament

strength, r0. As discussed subsequently, the ratio J intc =Jb
greatly influences whether cracks propagate cata-

strophically or non-catastrophically.

When this model was formulated, the assumption of
elastic homogeneity and isotropy was believed to be a

simplification. However, subsequent laminate theory

calculations [7] indicated that the shell is in fact nearly

isotropic, with an effective modulus close to the experi-

mentally measured value, E0 ¼ 37 GPa.

Fig. 3(a) is a schematic drawing that represents a

physical model of multiple cracking for the two-layer
composite where the applied strain, e, drives a number

of cracks from initial defects; these defects may be large,

as in Fig. 3(a), or small, as represented in Fig. 3(b).

Cracks along the interfaces between first-order lamellae

in the weak layers ‘‘tunnel’’ sequentially across the
specimen thickness. These tunnel cracks are assumed for

simplicity to be equally spaced edge cracks and to ter-

minate at the interface between the two layers. The

normalized crack density n is defined as the ratio of

specimen width w to crack spacing a, n ¼ w=a, see

Fig. 2.

2.1. Tunneling of large initial flaws

The theory presented in [5] to model crack growth

from large flaws is based on energy minimization, and

relies on the finite element analysis of the unit cell shown

in Fig. 2 to calculate the relevant physical parameters –

stress, strain, energy release rate, etc. Fig. 4 succinctly

summarizes the salient results of that earlier study. The

normalized work of fracture, W =W0, of the multiply
cracked composite specimen is shown in Fig. 4(a), as a

function of the toughness ratio, Keff
c1 =Kc2. The crack

density at failure, nf , as a function of Keff
c1 =Kc2 is shown

in Fig. 4(b). W0 represents the work to fracture of a

homogeneous reference beam of toughness Kc1 which

fails at initiation of the first crack.

This model suggests that the toughness ratio,

Keff
c1 =Kc2, must be larger than a threshold value of about

2 to prevent the first crack in the weak layer from

causing specimen failure. Furthermore, for Keff
c1 =Kc2

values in the experimentally observed range 2.5–3.0

[7,8], multiple tunnel cracks lead to an order of magni-

tude increase in work of fracture above that of a

uniform high toughness (Keff
c1 ) beam fractured by prop-

agation of the first crack. We confirmed this theoretical

criterion for the development of multiple cracking by



Fig. 4. (a) Normalized work of fracture, W =W0, and (b) crack density at failure, nf of a composite multiply cracked specimen as a function of the

fracture toughness ratio Keff
c1 =Kc2.

Fig. 5. Micrograph showing dye-penetrated tunnel cracks in the weak

layer. The longer cracks are through the thickness and are indicated by

symbol b; these saturate at a critical density. The short cracks that

propagate from the interface between layer m and layer s arrest as a

result of the compressive stress that develops between the longer cracks

at saturation – see Fig. 6. f is the fracture surface.
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performing bend tests on samples that contained resid-

ual surface compressive stresses that had been intro-

duced during the grinding stage of preparing specimens

from whole shells. 1 (Surface grinding of both ductile

and brittle materials invariably gives rise to surface

comprehensive stresses.) These specimens fractured
without developing multiple tunnel cracks, and were

associated with a work of fracture an order of magni-

tude lower than those that had not been polished. The

residual stresses must have produced an increase in the

effective toughness of the interface (0.6 MPam1=2, [7,8])

by an amount that renders Keff
c1 =Kc2 less than 2.0 (in

other words, the applied stresses must overcome the

residual compressive stresses in order for the large in-
herent flaws to propagate).

In attempting further extensions of this model, it

became clear that the toughening effect shown in

Fig. 4(a) cannot be extrapolated to very much larger

toughness ratios without fatally compromising the

model, and could not account for the three-order of

magnitude increase in work of fracture. In fact, we

discovered that for crack spacings smaller than a certain
value, tunnel cracks could not reach the effectively un-

loaded specimen surface. As shown in Fig. 5, a repro-

duction of Fig. 3b of [5], at a critical value of tunnel

crack density in bend tests of unnotched specimens,

short cracks initiate at the interface between the weak

and tough middle layers during tensile loading, and

grow ‘‘backwards’’ a short distance into the weak layer.

This phenomenon was in fact suggested by the results
of the finite element analysis of the configuration shown

in Fig. 2, for either applied bending or tensile stress

conditions. Fig. 6 shows that for sufficiently small tunnel

crack distances (in a specimen subjected to tension), the

normalized surface stress between adjacent tunnel
1 In our earlier work [1], the tensile and compressive of the bend bars

were as-grown inner and outer shell surfaces.
cracks becomes compressive! This implies that a crack

saturation density must result, and that additional

cracks in the weak layer could initiate only at the in-

terface between the weak and tough layer.

2.2. Tunneling of small initial flaws

The model just described was extended to investigate
the possibility of tunneling in the weak layer of a large

number of uniformly distributed surface flaws that are

very small compared to the layer thickness (Fig. 3(b)).

According to linear elastic fracture mechanics, these

would extend at a critical stress given by

rxx ¼ rc � Y2Kc2=
ffiffiffi
c

p
; ð1Þ

where the critical surface stress, rc, depends on the frac-

ture toughness Kc2 of the weak layer, the length c of the

small preexisting flaws, and a geometrical constant, Y2.



Fig. 6. Surface stress rxx between adjacent cracks in a multiply cracked

tensile specimen as a function of the normalized crack distance, a=w.
rxx is given in units E0e of the tensile stress in an uncracked plane strain

specimen subjected to the same applied strain e.
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Fig. 7 summarizes the implications of applying the

stress-based cracking criterion to the cracking pattern

shown in Fig. 2. The critical stress, rc, and the work of

fracture, W , are normalized with respect to r0 and W0,
the failure stress and work of fracture, respectively, of a

pre-cracked reference specimen with the higher tough-

ness value, Keff
c1 . The single precrack represents the cat-

astrophic influence of a large initial flaw in such a

specimen. As a result of the surface stress becoming

compressive at small crack spacings, Fig. 7(a) shows

that the crack density at failure is characterized by a

saturation limit even in the most favorable situation of a
low strength weak layer; the corresponding work of

fracture for this case is shown in Fig. 7(b).
Fig. 7. (a) Crack density at failure as a function of the ratio r0=rc. rc represe
small surface flaws. r0 is the failure stress of a uniform reference specimen wi

to half the specimen thickness. (b) Work of fracture for the same situation,

specimen.
These results clearly illustrate the advantage of large

pre-existing defects in theweak layer (discussed in the first

part of this section) with respect to work of fracture and

flaw tolerance of the composite beam: For a realistic but

moderate toughness ratio, say Keff
c1 =Kc2 � 2:5, and equal

thickness layers, the strength ratio r0=rc scales propor-
tionally to ð

ffiffiffiffiffiffiffiffi
c=t2

p
Þ � ðKeff

c1 =Kc2Þ. For small surface defects,

c � t2, and Keff
c1 =Kc2 � 2:5, this would be less than one –

the threshold value for multiple cracking shown in the

figure – thus indicating the impossibility of a stress-based

multiple cracking mechanism in a composite beam with

small surface defects and moderate toughness ratios.
3. Large scale bridging in the ‘‘tough’’ layer

Two types of large scale bridging were observed

during our experiments. The most important is included

in the schematic drawing of Fig. 1(a), which shows an

inclined crack path in the tough layer that is favored by

the existence of weak interfaces between second-order
lamellae. This path is available to one (or more) of

the tunnel cracks as it grows across the tough layer. The

crack path follows, without significant deviation, the

direction dictated by the second-order interfaces, as

observed in the tough layer of both notched and un-

notched samples. For the latter case, this was already

shown in Figure 8a of [1]. However, when a crack

propagates along this preferred direction, indicated by
the bold arrow in Fig. 1(a), it has to break approxi-

mately 50% of the second-order lamellae interfaces –

those which are oriented perpendicular to the direction

of crack propagation. These perpendicular lamellae be-

have as reinforcing bars that resist crack opening dis-

placements, and in turn crack propagation. For this

reason, fractographs of this region of the specimen,
nts the critical surface stress in the weak layer for microcracking from

th the high toughness Kc1 containing a single precrack of a length equal

given in units of W0, the work of fracture of the pre-cracked reference



Fig. 8. Fracture surfaces comprised of alternating smooth and rough regions at (a) )120 �C and (b) 200 �C.
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Figs. 1(b) and 8, show an alternating pattern of smooth

and rough surfaces for specimens tested at )120 �C,
Fig. 8(a), room temperature, Fig. 1(b) and 200 �C,
Fig. 8(b) (the temperature dependence is discussed be-
low). The smooth features correspond to debonded

second-order interfaces parallel to the direction of crack

propagation, whereas the rough surfaces correspond to

broken second-order lamellae oriented perpendicular to

the propagating crack. As discussed next, the amount of

pull-out greatly affects the stability of crack propagation

within the tough layer, and in turn the work of fracture

of the shell.
Before breaking at the end of the bridging zone, the

side faces of the bridging ‘‘strong’’ first-order lamellae

(comprised of second-order lamellae perpendicular to

the direction of crack propagation) slide against the

adjacent ‘‘weak’’ first-order lamellae lamellae which are

already fractured at their second-order interfaces along

the crack (Fig. 9 is a schematic of the pull-out process

observed in Fig. 8). This mechanism can be analyzed in
terms of established fiber bridging models with frictional
Fig. 9. Bridging zone for frictional sliding along debonded interfaces

between fractured (weak) and bridging (strong) first-order lamellae.

The front plane is rotated by 45� with respect to Fig. 1a as indicated by

the crack-tip coordinate system. The low toughness second-order in-

terfaces in weak lamellae are oriented parallel to the direction of crack

propagation but are perpendicular to this direction in adjacent strong

lamellae. Debond length, first-order lamellar thickness and mode I

crack opening are denoted by l, t and Duy , respectively. Depending on

strength variations in the bridging lamella, their fracture locus at the

end of the bridging zone may be either in the sliding area (1), or be-

tween the crack faces of the weak lamella (2). The first case leads to

additional energy dissipation by frictional pullout of strong lamella

behind the bridging zone. Due to the inclined crack path, the crack is

loaded simultaneously in mode I (ryy ) and mode II (rxy ).
sliding at fiber–matrix interfaces [10–12]. For equal

volume fractions and equal Young’s moduli of matrix

and fiber, the fiber bridging law derived in these refer-

ences, which relates the previously defined effective
traction on the crack surfaces, rðDuÞ, to the crack

opening displacement Du, reduces to

r Duð Þ ¼ EsDu
R

� �1=2

; ð2Þ

where E, s and R denote Young’s modulus, a constant

fiber frictional stress, and fiber radius, respectively. The

toughening contribution is obtained as the area under

the rðDuÞ curve (with r varying from zero to the limiting

fiber strength, r0) as

Jb ¼
2Rr3

0

3Es
: ð3Þ

As opposed to the situation analyzed in [11], the

bridging mechanism in Fig. 9 includes both modes I and

II contributions. Nevertheless, Eqs. (2) and (3) can be

generalized to the crossed-lamellar structure, as indi-

cated in the Appendix A if r is interpreted as the mag-

nitude of the vector sum of the normal and shear
tractions on the crack surfaces, and Du is interpreted as

the magnitude of the vector sum of the crack opening

and crack sliding displacements. Thus we introduce the

following ‘‘transformative’’ terms: matrix! ‘‘weak’’

first-order lamellae, bridging fibers! ‘‘strong’’ first-or-

der lamellae, fiber radius (R)! thickness of first-order

lamellae, t.
For surface roughness-induced ‘‘elastic friction’’ (see

Figure 10 [13]), the friction stress between adjacent first-

order lamellae should be of order

s / Eh
k
; ð4Þ

where h=k represents the average normalized surface

roughness of the first-order lamellar interfaces (Fig. 10).

Thus a toughening contribution

Jb ¼
2tr3

0

3E2h=k
; ð5Þ

can be expected. The size of the bridging zone, L, can be

roughly estimated from the following relation for lim-



h

λ

τ ~ E εs

εs~ h/λ

Fig. 10. The surface roughness-induced ‘‘elastic friction stress’’, s,
caused by sliding of adjacent first-order lamellae, is proportional to the

product of Young’s modulus, E, and the average sliding deformation,

es. The average sliding deformation, es ¼ Dus=Dx, is calculated from

average height, Dus ¼ h, and average spacing, Dx ¼ k, of surface

obstacles.

Fig. 11. (a) Ligament bridging a delamination between the middle and

outer layers of the shell. The vertical arrows indicate tunnel cracks in

the weak outer layer, the inclined arrows microcracks in the strong

middle layer; (b) Model for crack bridging by misaligned fibers [11].

According to [11], mode I loading leads to bending (moment M) of the

bridging ligament. In general, the crack faces can be loaded by modes

I and II tractions, therefore resulting in a tensile load (rt) on the

bridging ligament.
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iting strength, r0, and critical crack opening displace-

ment, Du0, [12]

r0 / Ee / E � Du0
L

: ð6Þ

Invoking the bridging law, Eq. (2) (with R ¼ t), and
the friction relation, Eq. (4), we obtain

L / tr0

s
/ r0

E
k
h
� t: ð7Þ

Because we do not have reliable experimental infor-

mation regarding either the friction stress, s, the

normalized surface roughness, h=k, or the strength of
first-order lamellae, r0, in the necessary orientation, we

lump these into an effective parameter b and write the

cohesive law, which is operative up to a critical crack

surface displacement, Du0, and limiting strength r0, as

rðDuÞ ¼ bDu1=2: ð8Þ
The crack bridging introduces an additional tough-

ening given by

Jb ¼
Z Du0

0

rðDuÞdðDuÞ ¼ 2

3
bDu3=20 : ð9Þ

A second type of large scale bridging, which is not

modeled in the present paper, was observed in the

middle tough layer of the conch shell and is shown in

Fig. 11(a). This mechanism involves the development of
delamination cracks at the interface between the outer

and middle layers that are bridged by intact plates

comprised of the middle layer. This phenomenon can be

understood and in principle analyzed using the model of

Spearing and Evans [10] for misaligned fibers in a fiber–

matrix composite (Fig. 11(b), adapted from [10]). For
mode I loading, such bridging ligaments can be con-

sidered as equivalent to small beams loaded by opposite
crack faces in bending, and the energy release rate can

be obtained from standard beam theory. In contrast to

the mode I loaded double cantilever beam specimen

analyzed in [10], the deflected crack in the tough layer is

subject to mixed mode loading. Thus the bridging la-

mella deform both in bending (mode-I loading) and in

tension (mode-II loading). Therefore, the bridging law

given by Spearing and Evans would need to be modified,
taking into account combined bending and tensile

loading of bridging ligaments. Depending on the mode

mixity, the resulting bridging law is expected to be a

softening relation (with bridging tractions decreasing as

a function of the crack opening displacements) for pre-

vailing mode I loading, or a hardening relation for

prevailing mode II loading.
4. Finite element analysis of large scale bridging

To quantify the parameters b and Du0 for the shell of
the conch, and in turn predict the energy dissipation

associated with crack bridging, a finite element analysis

of a series of experiments was performed using the

commercial codes ABAQUS [14] and PATRAN [15] for



Fig. 12. (a) Schematic of the four-point bend specimen with the notch

in the middle layer (M). The inner layer is denoted I. The crack

propagates at 45� between second-order interfaces. (b) The bridging

tractions across the crack face are simulated by non-linear springs

which obey a bridging law of the form rðDuÞ ¼ bDu1=2.
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pre- and post-processing. The details of the calculation

procedure are presented in [7]. A schematic of the two-

dimensional plane strain model is shown in Fig. 12.

First, trial values are selected for b and Du0. As dis-

cussed previously, the specimens are isotropic with
elastic modulus E0 ¼ 37 GPa, and are assigned a Poisson

ratio equal to 0:3. Crack bridging is achieved by placing

non-linear springs that obey the cohesive law, given by

Eq. (8), across the surfaces of the crack. As the applied

load is increased, the opening of the crack surfaces is

monitored and springs are removed if their stretch

reaches the critical value Du0. The crack tip is advanced
Fig. 13. Experimental and theoretical load–deflection curves for specimens co

geometries to validate the parameters). The theoretical unnotched beam res

tunnel crack propagating through the bridged middle layer) can be compare

prised solely of non-biogenic aragonite (KC ¼ 0:25 MPam1=2) or a beam in

(KC ¼ 0:6 MPam1=2).
when the total stress intensity factor, which has contri-

butions from the applied loads and the bridging trac-

tions and is determined from the numerically calculated

J integral, reaches a value equal to the fracture tough-

ness of the proteinacous interface between first-order
lamellae, equal to 0.60 MPam1=2.

Fig. 13 shows that calibration experiment A is well

predicted by b ¼ 630 Nmm�5=2 and Du0 ¼ 5 lm (r0 ¼
45 MPa); this figure is reproduced from [8]. These pa-

rameters are associated with Jb ¼ 148 N/m, a value much

larger than the energy release rate involved in the

cleavage of the proteinaceous interface embedded in the

composite shell, J intc ¼ ð0:6 MPa
ffiffiffiffi
m

p Þ2=37 GPa ¼ 9:7 N/
m. Significantly, these values predict reasonably well the

response of specimen B, whose dimensions differ con-

siderably from those of specimen A. These results suggest

that crack propagation in the tough middle layer is

characterized reasonably well by the crack-bridging

model. The energy associated with this process is com-

pared with the finite element calculated energy associated

with breaking simulated specimens made of non-biogenic
aragonite and of protein in Table 1. Crack bridging re-

quires roughly two orders of magnitude higher energy

than the energy required to break a specimen made of

non-biogenic aragonite.

The synergistic effects of multiple tunnel cracking in

weak layers and fiber bridging in the tough layer is

predicted using the finite element method by simulating,

with the calibrated cohesive law, the propagation of one
of the previously discussed tunnel cracks through the

tough middle layer. The load–displacement curve for a

typical simulation is shown in Fig. 13, and the energy
ntaining middle layer notches from experiments A and B (two different

ponse (simulation C, involving multiple cracking followed by a single

d with the theoretically predicted response (see inset) of a beam com-

which cracks propagate unbridged along a mineral–protein interface



Table 1

Area under the load–displacement curves for the curves in Fig. 13,

expressed in units of energy (103 J)

Aragonite Protein

interface

Notched

specimen

Multiple cracking

with bridged crack

0.07 0.4 5.8 23

S. Kamat et al. / Acta Materialia 52 (2004) 2395–2406 2403
dissipated is listed in Table 1. This last result shows that

the energy required to completely fracture an unnotched

shell with a given dimension is roughly 330 times more

than the energy required to break a specimen made of

non-biogenic aragonite.

This increase is somewhat less than the three-orders

increase seen in the experiments in [1]. However we note

that the results may depend sensitively on specimen
geometry and specimen-to-specimen variation in prop-

erties. Furthermore, there may be additional energy

dissipation mechanisms that have not been treated in the

analysis, e.g. the delamination cracks shown in Fig. 11.
5. Ductility of the organic (proteinaceous) interphase

While the volume fraction of the organic phase is

modest (a few percent at most), its role in the fracture

resistance of the shell cannot be overstated. To quantify

the effects of the interphase ductility on the strength and

work of fracture of the shell, we performed four points
(a)

(c)

Fig. 14. Load–deflection curve of dry unnotched sample. At low temperature

fracture behavior is very ‘‘brittle’’. As the temperature increases, the bridging

show much load-bearing capabilities.
bend tests in a temperature controlled chamber at tem-

peratures ranging from )120 to 200 �C. Unnotched

specimens of the type described in [4] were used. We

assume that within the range )120 to 200 �C, the me-

chanical properties of the aragonite do not change, and
that there exists a glass transition temperature, Tg, for
the protein in this temperature range.The load–dis-

placement traces for four representative temperatures

are shown in Fig. 14(a)–(d). As expected, the response

becomes increasingly ‘‘brittle’’ at low temperatures, as

evidenced by the lack of deformation in the post-peak

region. The nominal strength goes through a maxima at

�80 �C.
The brittleness can be quantified through the brittle-

ness factor, Fb, defined as the area under the load–dis-

placement curve at peak load divided by the total area

(this measure has been widely used for other quasibrittle

materials such as concrete; it cannot be used to char-

acterize the load–displacement response of ductile ma-

terials). As shown in Fig. 15, there appears to be a brittle

to ductile transition between 100 and 150 �C, a range
consistent with the existence of a glass transition tem-

perature. This explains why the fracture surface of a

very brittle specimen tested at )120 �C (Fig. 8(a)) is

relatively smooth, indicating a relatively small amount

of fiber pullout and crack bridging, as compared to the

significant pull-out observed on the fracture surface of a

quasi-ductile specimen tested at a higher temperature

(Fig. 8(c)). The degree of pull-out at room temperature,
(b)

(d)

s (A and B), the sample did not show any post peak behavior and the

becomes more efficient. At high temperatures (D), the samples did not



Fig. 15. Brittleness factor as function of temperature.
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as shown in Fig. 1(b), is intermediate between that of
Fig. 8(b) and (c).

Further insight into the existence of a well-defined Tg
for the protein interphase was obtained from dynamic

mechanical analysis (DMA), a widely used technique to

determine Tg of organic polymers. DMA analysis in-

volves elastic deformation in response to sinusoidally

varying vibrational forces of modest amplitude. Part of

the energy is stored as potential energy (stored modulus,
G0) and part is dissipated as heat (loss modulus, G0). The
loss tangent (tan c), defined as the ratio of the energy

dissipated per cycle to the maximum energy stored

during cycle, is used to determine Tg of polymers, be-

cause it amplifies the difference between the storage and

loss moduli.

Using a Rheovibron machine (RMS800, TA Instru-

ments, New Castle, DE) at a frequency of 1 Hz, DMA
was undertaken of a 9.5� 2.5� 42 mm3 rectangular

parallelepiped, with the results shown in Fig. 16. The

most prominent peak in the loss tangent is taken as Tg
and is approximately 175 �C, in reasonable agreement

with the brittle to ductile transition in the brittleness

curve.

It is also possible to estimate Tg of proteins from their

amino acid contents, using a protocol involving the van
der Waals interaction volume of the various amino ac-
Fig. 16. Storage modulus, loss modulus, and loss tangent as functions

of temperature.
ids. This has been done for several proteins extracted

from wild S. gigas shells; Tg is estimated to be �180 �C
from this approach (the details can be found in [4]), in

good agreement with Tg determined by DMA.
6. The ACK limit

As discussed by Cox and Marshall [11], the parame-

ters J intc , Jb, b and Du0 are related to the toughness and

notch sensitivity of structures associated with bridged

cracks; their magnitudes determine whether failure oc-

curs as a result of catastrophic or non-catastrophic
crack propagation.

Cox and Marshall define several parameters that as-

sess the nature of the failure produced by cracks that

obey a bridging law of the form of Eq. (8); r1 defines the
value of the critical stress for crack extension in the

ACK (Aveston–Cooper–Kelly) limit [2], a situation

where essentially all crack-bridging ligaments remain

intact as a crack propagates across a matrix; am defines
the non-catastrophic bridging length scale that repre-

sents the amount of crack growth necessary to approach

the ACK limit; and as is the small scale bridging length

scale.

For the bridging law of Eq. (8), these parameters

become

r1

r0

¼ 2J int
c

Jb

� �1=3

; ð10Þ

am ¼ pE0

4

3J int
c

2

� �1=3

b�4=3; ð11Þ

as
am

¼ 2

p
r0

r1

� �4

: ð12Þ

As discussed by Cox and Marshall, these provide

insight into the type of (bridged) crack propagation that

occurs in composite plates of width w, be they unnot-

ched, or containing a notch of length, c0. First, non-
catastrophic failure gives way to catastrophic failure for

r1 > r0, or rather if J intc exceeds Jb. Second, the fibers’

effectiveness increases with increasing w=am. If the width
of a specimen is much less than am, then bridging effects

are negligible, even though the bridging ligaments may

be intact all along the crack wake. Third, if caam, then
crack growth from a notch is stable. On the other hand,

if the specimen contains a notch that is much less than

am, then crack growth is unstable immediately (or

shortly after) the crack emerges from the notch. Finally,

if am � as, then the ACK limit will be reached in a
sufficiently large specimen.

For the conch shell considered here, w � 10 mm, and

the tunnel cracks that are arrested at the interface be-

tween the weak and tough layers act as initial notches

of length c0 � 5 mm. The experimentally calibrated
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bridging law parameters yield r1=r0 ¼ 0:5, as � 25 mm

and am � 1:3 mm. Therefore the conch shell is associ-

ated with all of the favorable situations described above,

as observed experimentally. It is remarkable that besides

dissipating energy, the multiple tunnel cracks are also
responsible for the subsequent stable propagation of

their bridged extensions into the tough middle layer.
Fig. 17. Friction force equilibrium in the y-direction during mutual

sliding of debonded first-order lamellae in the sliding region of the

bridging zone. The equilibrium in the x-direction can be considered in

the same way.
7. Conclusions

It has been shown through two quantitative micro-

mechanical fracture models that the energy involved in
fracturing the shell of the conch S. gigas can be parti-

tioned into components, the first associated with multiple

cracking of the outer layers of the shell, and the second

with crack surface bridging in the middle layer. More-

over, the experimentally calibrated model parameters

suggest that the structural configuration of the shell has

evolved in a manner that allows inherent cracks to

achieve the ACK limit that enables them to propagate in
a non-catastrophic manner. Experiments performed at

temperatures ranging from )20 to 200 �C demonstrate

that the ductility of the proteinaceous interphase of the

shell plays a critical role in achieving this desired limit.
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Appendix A. Small scale bridging law for the crossed-

lamellar structure

In this section we derive a micromechanics-based

formula that approximates the forces provided by the
first and second-order lamellae in resisting the crack

opening displacements of a crack as it propagates in the

strong layer. It is shown that while these crack-bridging

features have plate-like geometries, the functional form

of the bridging law is similar to ones derived for brittle-

matrix composites involving circular fibers [11,16]. To

this end, we first invoke global equilibrium of the frac-

tured (weak) first-order lamellae (Fig. 17) to obtain

ryi � t ¼ 2szi � l ði ¼ x; yÞ: ðA:1Þ
Here, l denotes the sliding distance, t the thickness of the
first-order lamellae and ryi the applied stress at the
boundary to the non-sliding region. The traction com-

ponents ryy and ryx lead to mode I and mode II crack-tip

behavior, respectively. The corresponding frictional
stress components syz (for mode I) and sxz (for mode II)

are considered to be material constants which charac-

terize the interface. Eq. (A.1) is based on the assumption

that fractured and bridging lamellae at the boundary of

the sliding zone are loaded by uniform tractions,

rðf Þ
yi ðlÞ ¼ rðbÞ

yi ðlÞ ¼ ryi.

Assuming symmetry, the crack opening displacement

can be defined as twice the displacement of the fractured
lamellae at the crack surface, uðf Þi ð0Þði ¼ x; yÞ. The dis-

placement of the bridging lamella, uðbÞi ðyÞ, is obviously

zero at the crack surface (y ¼ 0) and equal to uðf Þi ðlÞ at
the end of the sliding zone (y ¼ l). Therefore, the crack

opening displacement (Duy for mode I and Dux for mode

II) can be calculated from

Dui
2

¼ ½uðf Þi ð0Þ � uðf Þi ðlÞ	 � ½uðbÞi ð0Þ � uðbÞi ðlÞ	

¼
Z l

0

Drðbf Þ
yi ðyÞ
~E

dy ði ¼ x; yÞ; ðA:2Þ

where the stress difference between bridging and frac-

tured lamellae is denoted by Drðbf Þ
yi , and ~E is equal to

Youngs modulus, ~E ¼ E, for i ¼ y and equal to the

shear modulus, ~E ¼ G, for i ¼ x.
Local equilibrium of a small part of the fractured

or bridging lamella over a small distance of the sliding

region requires (Fig. 17)

t � drðf Þ
yi ðyÞ ¼ 2szi � dy and

t � drðbÞ
yi ðyÞ ¼ �2szi � dy ði ¼ x; yÞ; ðA:3Þ

and therefore

t �
dDrðbf Þ

yi ðyÞ
dy

¼ �4szi ði ¼ x; yÞ: ðA:4Þ

After partial integration of Eq. (A.2), we obtain the

crack opening displacement as
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Dui ¼
4szil2

~Et
ði ¼ x; yÞ: ðA:5Þ

Eq. (A.3) can be used to eliminate the sliding distance

(l). The bridging law follows as

ryiðDuiÞ ¼
~Eszi � Dui

t

 !1=2

ði ¼ x; yÞ: ðA:6Þ

Explicitly for modes I and II, this equation is written

as

ryyðDuyÞ ¼
Esyz � Duy

t

� �1=2

for mode I; ðA:7Þ

and

ryxðDuxÞ ¼
Gszx � Dux

t

� �1=2

for mode II: ðA:8Þ

The particular values of the friction constants, szy and
szx, as well as the values of the moduli, E and G, are
unknown. In order to simplify the simulations, we have

postulated a bridging law which combines (A.7) and

(A.8) in a single equation

rðDuÞ ¼ Es � Du
t

� �1=2

; ðA:9Þ

where

Du ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du2x þ Du2y

q
and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
xy þ r2

yy

q
; ðA:10Þ

are the magnitude of the crack opening displacement

vector and the total bridging traction, respectively, and
Es represents the product of an efficient modulus with

an efficient friction stress.
References

[1] Kuhn-Spearing LT, Kessler H, Chateau E, Ballarini R, Heuer

AH, Spearing SM. J Mater Sci 1996:6583.

[2] Aveston J, Cooper GA, Kell A. Properties of fiber composites. In:

Conf Proc, 15, National Physical Laboratory. IPC Science and

Technology Press; 1971.

[3] Su XW, Zhang DM, Heuer AH. Chemistry of Materials

2004;16:581.

[4] Naisorrou M. Characterization of the damage mechanisms and

environmental effects on the mechanical properties of the shell of

Strombus gigas. MS thesis, Department of Materials Science and

Engineering, Case Western Reserve University, August 2001.

[5] Kessler H, Ballarini R, Mullen RL, Kuhn LT, Heuer AH. Comp

Mater Sci 1996;5:157.

[6] Kessler H, Ballarini R, Mullen RL, Kuhn LT, Heuer AH. Comp

Mater Sci 1996;6:353.

[7] Kamat S. Toughening mechanisms in laminated composites: a

biomimetic study in mollusk shells. PhD thesis, Department of

Materials Science and Engineering, Case Western Reserve Uni-

versity, August 2000.

[8] Kamat S, Su X, Ballarini R, Heuer AH. Nature 2000;405:1036.

[9] Hutchinson JW, Suo Z. Advances in applied mechanics, vol. 29,

1990. p. 63.

[10] Spearing SM, Evans AG. Acta Metall Mater 1992;40:2191.

[11] Cox BN, Marshall DB. Acta Metall Mater 1994;42:341.

[12] Bao G, Suo Z. Appl Mech Rev 1992;24:355.

[13] Raj R, Ashby MF. Met Trans 1971;2:1113.

[14] ABAQUS, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI.

[15] MSC PATRAN, MacNeal Schwindler Corporation, Los Angeles,

CA.

[16] Hutchinson JW, Jensen HM. Mech Mater 1990;9:139.


	Fracture mechanisms of the Strombus gigas conch shell: II-micromechanics analyses of multiple cracking and large-scale crack bridging
	Introduction
	Multiple cracking in the ``weak'' layer
	Tunneling of large initial flaws
	Tunneling of small initial flaws

	Large scale bridging in the ``tough'' layer
	Finite element analysis of large scale bridging
	Ductility of the organic (proteinaceous) interphase
	The ACK limit
	Conclusions
	Acknowledgements
	Small scale bridging law for the crossed-lamellar structure
	References


