Mechanical fatigue of polysilicon: Effects of mean stress and stress amplitude

H. Kahn a,*, L. Chen b, R. Ballarini b, A.H. Heuer a

a Department of Materials Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 7204, USA
b Department of Civil Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 7204, USA

Received 17 June 2005; received in revised form 3 October 2005; accepted 5 October 2005

Abstract
Polycrystalline silicon (polysilicon) fatigue specimens with micrometer-sized dimensions were fabricated and subjected to cyclic loading using an integrated electrostatic actuator. The fatigue effects were determined by comparing the single edge-notched beam monotonic bend strength measured after cyclic loading to the monotonic strength of “virgin” specimens that had received no cycling. Both strengthening and weakening were observed, depending on the levels of mean stress and fatigue stress amplitude during the cyclic loading. Monotonic loading with similar sub-critical stress levels had no effect. The physical mechanisms responsible for this behavior are discussed, and a model based on grain boundary plasticity is presented for the strengthening behavior.

Keywords: Fracture; Fatigue; Semiconductor; Micromechanical modeling

1. Introduction
Polysilicon deposited by low-pressure chemical vapor deposition (LPCVD) is a commonly used material both for integrated circuit applications and for microelectromechanical systems (MEMS). Therefore, its mechanical reliability, including its fatigue resistance, is of great interest. Though polysilicon is a brittle material, dynamic fatigue – delayed fracture under applied cyclic stresses – has been well-documented [1–7]. Fatigue in polysilicon has been reported for both tension/compression stress cycling (load ratio \(R = -1 \)) [2–4] and for zero/tension stress cycling (\(R = 0 \)) [6,7]. (For fatigue cycling, the load ratio, \(R \), is the ratio of the minimum stress to the maximum stress in the cycle. Tension is taken as positive, compression as negative.) For both cases (\(R = -1 \) and 0), the lifetime under high-cycle fatigue depends only on the number of cycles, not on the total time or the frequency of the test, for testing frequencies ranging from 1 Hz to 40 kHz [6]. This implies that dynamic fatigue depends only on the applied stresses; we believe it must be mechanical in origin, and not due to time-dependent environmental effects such as stress corrosion, oxidation, or other chemical reactions, although contrary views have been expressed (see below). In fact, we recently showed that low-cycle fatigue strengths are strongly influenced by \(R \), but not by the ambient (air or vacuum) [2]. However, our high-cycle fatigue lives were adversely affected by a humid ambient [2], which was recently corroborated by Alsem et al. [5]. Van Arsdel and Brown [8] also reported that nanoindenter-induced pre-cracks in polysilicon specimens grew when cyclically loaded in humid air (>50% relative humidity), but not in dry air. We postulated that in air, surface oxide formation on mechanically induced subcritical cracks caused wedging effects that increased the applied stress intensity at the subcritical crack tips; on the other hand, Van Arsdel and Brown attributed their results to surface oxidation of the crack tip followed by stress corrosion of the oxide in humid air to extend the crack. (Stress corrosion of SiO\(_2\) in humid air is well documented [9].)

There is another possible explanation for enhanced fatigue in humid ambients that does not involve chemical...
It has also been reported that the surfaces in the immediate vicinity of fatigue cracks become rougher after cycling — increasing from an average roughness of 8.9–17.2 nm [6], and from an rms roughness of 10–22 nm [12] — as measured by atomic force microscopy. It is important to note that both of these studies, as well as others [4,5,8], tested polysilicon devices fabricated by the MUMPs Multi-User MEMS Processes (MUMPs) program. This process uses P-doped polysilicon that apparently forms extremely thick “native” surface oxides (≈30 nm) after release [4], and the increase in rms roughness has been attributed to a stress-assisted nonuniform dissolution of the surface oxide [12]. (These thick surface oxides have been attributed to galvanic effects between the P-doped polysilicon and deposited Au contacts [13].) By contrast, our in-house fabricated undoped polysilicon displays the usual thin (≈2 nm thick) native surface oxides after release, as measured by X-ray photoelectron spectroscopy (XPS) depth profiling. We have also shown that polysilicon devices with thermally grown oxides of 45 nm or thicker are susceptible to delayed failure when subjected to monotonic tensile loads in humid air, presumably due to stress corrosion in the surface oxide, while identical devices with thin native oxides (≈2 nm thick) do not undergo delayed failure [14].

It is apparent that surface oxides and surface oxidation can affect the behavior of polysilicon devices under cyclic loading, and it has even been suggested that cyclic stressing of polysilicon promotes oxide formation [4,5,12]. However, it is also clear from the absence of a frequency dependence on lifetime [6] and from the equivalence of low-cycle fatigue strength in air and vacuum [2], that mechanical stresses, rather than environmental interactions, are the principal origin of polysilicon fatigue. It is the goal of this paper to systematically explore the effects of applied cyclic stresses on the fatigue behavior. Specifically, we subjected polysilicon specimens to cyclic loading with independently varied mean stresses, \(\sigma_m \), and fatigue stress amplitudes, \(\Delta \sigma \), and subsequently measured the resulting monotonic bend strength.

2. Experiment

The micromachined polysilicon device used in this investigation is shown in Fig. 1. Devices were fabricated from 5.7 \(\mu \)m thick LPCVD polysilicon films, using standard micromachining techniques described previously [3]. The polysilicon films were deposited as multilayers [15], five in the present specimens, and were annealed in nitrogen at 1100 °C for one hour to reduce residual stresses to less than 10 MPa. The resulting microstructures are relatively equiaxed and fine-grained (grain diameters ≈100–300 nm); a typical example is shown in Fig. 2. The presence of the native interfaces between the five polysilicon layers does not affect the fracture behavior [16].

The electrostatic comb-drive microactuator shown in Fig. 1(a), described previously [3], contains 1438 pairs of interdigitated comb fingers. It allows constant, monotonically increasing, or cyclic loading, depending on whether direct current (DC) or alternating current (AC) voltages are applied. (The resonance frequencies of the devices are approximately 10 kHz.) Cyclic loading with a finite mean stress, \(\sigma_m \), can be achieved by adding an AC voltage to a DC bias. Figs. 1(b) and (c) show two different single edge-notched beam fracture mechanics specimens that can be integrated with the microactuator. The microactuator can move in only one direction with an applied DC voltage (to the left as shown in Fig. 1(a)), whether the voltage is positive or negative. Therefore, a DC voltage will generate tensile stresses at the notch root in the specimen in Fig. 1(b) and compressive stresses at the notch root in the

Fig. 1. Scanning electron microscopy (SEM) images of a micromachined device for measuring bend strength and fatigue resistance. (a) The electrostatic actuator integrated with the fracture mechanics specimen. (b,c) Higher magnification rotated images of two single edge-notched fatigue specimens that can be integrated with the actuator; the inset in (b) shows the notch area after testing. (d) Higher magnification rotated image of the measurement scale.
The different strength and fatigue tests that have been performed are shown schematically in Fig. 3. Fig. 3(a) shows a standard monotonic bend strength, \(\sigma_{\text{crit}} \), test. Fig. 3(b) shows a constant stress hold, \(\sigma_{\text{hold}} \), test, which is followed by a measurement of the monotonic bend strength. Fig. 3(c) shows a ramped \(\Delta \tau \) test. In this test, a DC voltage is first applied to generate a mean stress; then an AC voltage is applied at the resonance frequency, and the amplitude of the AC voltage is increased until catastrophic fracture occurs at the notch root. Typically, the test takes less than 1 minute to complete. The fatigue strength is assumed to be equal to the critical tensile stress required for catastrophic crack propagation, \(\sigma_{\text{crit}} \), and is taken as the maximum tensile stress of the final stress cycle.

![Fig. 2. (a) Cross-sectional transmission electron microscopy (TEM) image of the LPCVD polysilicon film. (b,c) SEM images illustrating how the TEM specimen was cut from a fatigue specimen using a FEI DualBeam 235 focused ion beam (FIB) instrument. (b) The original \(\times \)-marks between which a Pt line was deposited to delineate the desired specimen; the inset is a top view. (c) The thin TEM-ready section after FIB milling.](image)

![Fig. 3. Schematic representations of the stresses seen at the notches of the specimens shown in Fig. 1, during four types of mechanical strength tests. See text for further details.](image)
One disadvantage of the ramped $\Delta \sigma$ fatigue test (Fig. 3(c)) is that $\Delta \sigma$ and σ_m are not completely independent. For a given σ_m, the $\Delta \sigma$ must be high enough that the maximum stress in the cycle exceeds the fracture strength. Therefore, the effects of small $\Delta \sigma$, particularly for compressive σ_m, cannot be explored in this test. To independently investigate the effects of $\Delta \sigma$ and σ_m, constant $\Delta \sigma$ tests were run, as shown in Fig. 3(d). Here a constant $\Delta \sigma$ is maintained for a fixed time, which is followed by a measurement of the monotonic bend strength. The only tests of this type that cannot be performed are those with highly tensile σ_m and high $\Delta \sigma$, since in this case the maximum stress in the cycle would exceed σ_{crit}.

s_{hold} in Fig. 3(b) and σ_m in Fig. 3(c) and (d) can be tensile or compressive. When the test requires both tensile and compressive loads (such as Fig. 3(c) when s_{hold} is compressive), loading in the “opposite” direction is achieved by mechanically displacing the actuator with a micromanipulated probe, as the microactuator can only move in one direction under an applied DC voltage. Obviously, cyclic stresses cannot be achieved using this pushing technique.

For all tests, the deflection of the microactuator was optically monitored throughout the test. Fig. 1(d) shows the region of the microactuator near the measurement scale. Constructive interference of the variably spaced holes in the actuator assists in determining the amplitude of the cyclic deflections. (The holes also facilitate etching of the sacrificial oxide during hydrofluoric acid release.) Finite element analysis (FEA) of the device is used to relate the deflection of the microactuator to the deflection of the fracture mechanics specimen and to the stress at the notch root.

For FEA, Young's modulus of polysilicon is assumed to be 164 GPa [17].

Devices were fabricated from undoped polysilicon. The devices could be B-doped, by boron diffusion at the wafer level after polysilicon etching [3]. For the undoped devices, a thin Pd film was sputtered onto the devices, just before testing, to achieve sufficient conductivity for electrostatic actuation, and it was of interest to ascertain if the Pd affects the mechanical behavior. The Pd films were DC sputter-coated using a Denton Vacuum Desk II sputterer at ≈ 50 mTorr (6.7 Pa) Ar, ≈ 45 mA, for 40 s. A scanning electron microscopy (SEM) image of a sputtered Pd film on a (100) Si wafer is shown in Fig. 4(a). The thickness of this film was measured with a Veeco Instruments Dektak 3030ST profilometer to be 17 ± 3 nm, and the SEM image indicates an uneven morphology. Surface analysis of the film using XPS did not detect Si; this suggests that the Pd film is continuous, although the X-ray incidence angle of 45° may have allowed the higher Pd features to shadow any exposed Si. A transmission electron microscopy (TEM) image of a Pd film deposited onto an amorphous carbon substrate using the same sputtering conditions with a sputtering time of 60 s is shown in Fig. 4(b). As in the SEM image, the TEM images indicate an uneven morphology, and suggest gaps among interconnected Pd islands. However, it should be noted that the presence of very thin Pd regions in the gaps, up to several monolayers thick, would not provide sufficient contrast to be detected by TEM.

The observations in Fig. 4 indicate that the Pd film sputtered onto the polysilicon actuators consists of a network of coalesced islands, which is sufficiently continuous to provide adequate conductivity. It is not clear whether or not any polysilicon is completely exposed, but there are certainly areas of very thin Pd, and the spacing between these areas is approximately equal to the film thickness, 17 nm. It is noted that the films in Fig. 4 were deposited onto very smooth substrates. On the polysilicon devices, the inner surfaces of the notches display roughness due to the plasma etching [16], and therefore the Pd coatings on these surfaces may exhibit more uneven morphologies.

3. Results

Fig. 5(a) shows the single edge-notched beam monotonic strength, σ_{crit}, measurements (Fig. 3(a)) of B-doped polysilicon specimens with and without sputtered Pd. The data...
are shown in a Weibull probability plot, with the straight-line fits indicating the expected adherence to Weibull statistics for brittle fracture. The addition of Pd increases the average bend strength by about 10%. Since fracture of the specimens originates on the inner surfaces of the notches [3,16], the Pd on these surfaces must produce a modicum of strengthening, possibly by diminishing the severity of the “Griffith flaws” that cause catastrophic failure. (The uncertainty of each bend strength measurement is about ±0.15 GPa, which arises from an uncertainty in actuator deflection of about ±0.3 μm.)

To determine whether highly compressive or tensile monotonic stresses can affect the monotonic strength, constant hold tests (Fig. 3(b)) were performed. These results are compared with standard monotonic \(\sigma_{\text{crit}} \) tests (Fig. 3(a)) in a Weibull probability plot in Fig. 5(b), and include data from standard bend tests (squares), data from samples that endured a constant compressive hold stress before monotonic strength testing (triangles, \(\sigma_{\text{hold}} = -4.5 \) GPa for a few seconds), and data from samples that endured a constant tensile hold stress before monotonic strength testing (circles, \(\sigma_{\text{hold}} = -2.7 \) GPa for about 10 min). For both cases – compressive \(\sigma_{\text{hold}} \) and tensile \(\sigma_{\text{hold}} \) – there are no significant differences in the observed \(\sigma_{\text{crit}} \).

Fig. 6 shows results from ramped \(\Delta \sigma \) fatigue tests (Fig. 3(c)) of undoped (with sputtered Pd) and B-doped (without Pd) polysilicon, plotted as fatigue strength versus \(\sigma_m \). (We reported the data in Fig. 6(a) in a previous paper [2] as fatigue strength versus \(R \).) The undoped results include data taken in air (10^5 Pa) and vacuum (10 Pa). The behavior in the two ambients is indistinguishable. Also, the dependence of fatigue strength on \(\sigma_m \) is similar for both doped and undoped specimens – varying \(\sigma_m \) from highly tensile to highly compressive leads to a marked decrease in fatigue strength. We previously showed fractographs for specimens tested with both highly tensile and highly compressive \(\sigma_m \) [2]. The “mirror” region on the fracture surface of the compressively biased specimen was significantly larger than that on the specimen that had experienced a tensile bias, indicating that sub-critical crack growth occurred during the cyclic stressing of the compressively biased specimen.

In Fig. 6(a) and (b), the monotonic bend strengths, \(\sigma_{\text{crit}} \), taken from specimens that had experienced no cycling, are also presented. It is clear that a compressive \(\sigma_m \) leads to a significant decrease in \(\sigma_{\text{crit}} \). Both plots, particularly Fig. 6(a), also suggest that a highly tensile \(\sigma_m \) leads to an increase in \(\sigma_{\text{crit}} \) for these ramped \(\Delta \sigma \) fatigue tests. Since

Fig. 5. (a) Monotonic strength results for B-doped polysilicon with (circles) and without (squares) sputtered Pd. The data display averages and Weibull moduli of 3.4 GPa and 17 for samples with Pd and 3.1 GPa and 8.5 for samples without Pd. (b) Monotonic B-doped polysilicon bend test results, including data from standard bend tests (squares, Fig. 3(a)) and data from tests of samples that endured a constant hold stress before monotonic strength testing (Fig. 3(b)). A single Weibull distribution describes all the data; the average strength is 3.1 GPa, and the Weibull modulus is 12.

Fig. 6. Results from increasing \(\Delta \sigma \) fatigue tests (Fig. 3(c)) of polysilicon in air (circles) and vacuum (triangles). (a) Data for Pd-coated undoped polysilicon, and (b) data from B-doped polysilicon with no Pd. In each plot the monotonic strength, taken from specimens that saw no cycling, is shown as the solid square; the square marks the average strength, and the error bars represent one standard deviation.
the results in Fig. 5(b) rule out any effects due simply to monotonic stresses, the trends shown in Fig. 6 must be caused by cyclic stresses.

Fig. 7(a) shows results for constant Δσ tests (Fig. 3(d)) where σ_m was fixed at −2.2 GPa, and Δσ was varied. The cycling time was 10 min, equivalent to ≈6 × 10^6 cycles. For this σ_m, cycling with small Δσ does not affect the σ_crt measured after cyclic stressing, but cycling with large Δσ leads to a decrease in σ_crt. This implies that the weakening seen for compressive σ_m in Fig. 6 is due to the large Δσ experienced by these specimens, and not solely because of the compressive σ_m.

Fig. 7(b) Shows the results for constant Δσ tests of undoped polysilicon where Δσ was fixed at 2.0 GPa (±1.0 GPa), and σ_m was varied. The cycling time was 10 min, equivalent to ≈5–8 × 10^6 cycles (for higher absolute values of σ_m, the resonant frequency of the device increases). For small tensile or compressive σ_m, σ_crt is unaffected by the relatively small Δσ cycling. However, for large tensile or compressive σ_m, σ_crt is enhanced. In the experiments with the highest tensile σ_m, 2.0 GPa, the maximum tensile stress seen at the notch root during cycling was 3.0 GPa. This exceeds the average monotonic bend strength, 2.7 GPa, though it falls within one standard deviation, 0.4 GPa. As shown in Fig. 3(d), once the σ_m is applied, the cyclic stresses are ramped up to the desired Δσ. None of the five specimens tested under these conditions broke when the cyclic stresses were ramped up to a σ_max of 3.0 GPa. Statistically, it is highly unlikely that all five specimens would have displayed σ_crt greater than 3.0 GPa without any cycling. Therefore, it is presumed that during the ramp up of the cyclic stress, which takes several seconds (≈10^5 cycles), enough strengthening occurred in the specimens to survive a σ_max of 3.0 GPa.

Fig. 7(c) Shows results for similar constant Δσ tests of B-doped polysilicon (no Pd). For σ_m of 1.8 GPa, Δσ was 1.8 GPa, and for σ_m of 2.2 GPa, Δσ was 0.9 GPa. The cycling time was 10 min, equivalent to ≈6–7 × 10^6 cycles. As with the undoped specimens, low amplitude cycling with high σ_m leads to apparent strengthening. The effect is not as apparent as for the undoped specimens, but the maximum σ_m in these tests is a slightly smaller fraction of σ_crt than in the undoped polysilicon tests. Student’s t-tests were performed comparing the two sets of constant Δσ data in Fig. 7(c) with the 18 results used to produce the average monotonic bend strength shown in the plot. For σ_m = 1.8 GPa, the change in σ_crt is not significant (0.10 > P > 0.05), but for σ_m = 2.2 GPa, the increase in σ_crt is significant (0.05 > P > 0.01). This result indicates that the sputtered Pd film is not responsible for the strengthening seen in the undoped polysilicon specimens.

Fig. 8 presents the combined results for all constant Δσ tests plotted as the measured monotonic bend strength, σ_crt, versus the four parameters of cyclic loading, σ_min.
\(\sigma_{\text{max}}, \sigma_{\text{m}}, \) and \(\Delta \sigma \). Since the wafers had slightly different average strengths due to stochastic differences in processing affecting the severity of "Griffith" flaws, the measured strengths and the loading parameters are normalized by dividing by the average monotonic strength (as determined by specimens that saw no cycling). It is clear that \(r_{\text{crit}} \) is not directly dependent on any individual parameter. However, a three-dimensional plot of the normalized \(r_{\text{crit}} \) versus \(r_{\text{m}} \) and \(D_{\text{r}} \) (Fig. 9(a)) reveals that, while there is significant scatter in the data typical of brittle fracture phenomena, qualitative trends exist when these two parameters are combined. These trends are summarized in Fig. 9(b).

4. Discussion

Fatigue behavior of polysilicon, determined by measuring the monotonic bend strength after a period of cyclic loading, is strongly influenced by the cyclic stress levels. As seen in Fig. 9, both strengthening and weakening occur in different regimes of \(\Delta \sigma \) and \(\sigma_{\text{m}} \). We presume that the same physical processes control both regimes, and discuss three possible mechanisms to explain the observed behavior: microcracking, dislocation activity, and grain boundary plasticity. Weakening can be produced by microcracking simply by increasing the length of initial flaws. As discussed above, fractography has revealed that the weakened specimens do contain longer initial pre-cracks. Microcracking in brittle ceramics has been observed after compressive fatigue cycles [18], and after Hertzian contact [19]. Also, debris particles have been observed in the crack wake of fatigued Al\(_2\)O\(_3\), which is interpreted as indicating a microcracked crack tip damage zone [20]. On the other hand, to produce strengthening, shallow microcracks must form with close enough spacings to shield the crack tips [21,22]. For example, for the data shown in Fig. 9(a), the average monotonic bend strength without cycling is 2.7 GPa. Given the fracture toughness, \(K_{\text{IC}} \), of polysilicon of 1.0 MPa m\(^{1/2}\) [16], this corresponds to an initial pre-crack of 90 nm, using the standard relation

\[
K_{\text{IC}} = k \sigma_{\text{crit}} (\pi a)^{1/2},
\]

where \(\sigma_{\text{crit}} \) is the stress at failure, \(a \) is the size of the crack-initiating flaw, and \(k \) is a constant equal to 0.71 for a semi-circular flaw [23]. For closely spaced parallel cracks, the stress intensity, \(K \), at the crack tip can be approximated by replacing the crack size, \(a \), in Eq. (1) with the spacing between the cracks [22]. Therefore, to achieve the \(\approx 50\% \) increase in monotonic strength seen in Fig. 7(b), the spacing between parallel microcracks must be \(\approx 40 \) nm. This spacing is smaller than the typical grain diameter of the polysilicon (Fig. 2(a)) by about a factor of five. Therefore, the majority of these microcracks would have to lie within the interior of grains. Though silicon grains undoubtedly contain cleavage planes, it is difficult
This latter situation is analogous to the small $\Delta \sigma$ cycling with high compressive σ_m (the left side of Fig. 7(b)). The compressive stresses supply both the mechanical constraint and the shear stress. The same level of shear stress will be generated with a high tensile σ_m (the right side of Fig. 7(b)). However, in this case, the mechanical constraint is not present, and the applied shear (and bending) stresses would be expected to cause crack extension and brittle fracture instead of dislocation emission [30]. For similar reasons, TEM investigations of cracks in silicon have generally not detected dislocations at arrested crack tips [31–33].

It is also possible that internal friction effects generate localized heating in the area around the notch root in the polysilicon specimen during resonance testing, which would further promote dislocation activity. Though Muhlstein et al. [4] reported that infrared imaging of a similar device did not reveal any temperature increase at the notch root, their spatial resolution of 8 μm may have been too coarse to detect very local effects. To investigate heating, we sputtered a thin (\approx20 nm) Au film onto a polysilicon device and subjected it to the same cyclic loading conditions that caused strengthening in Fig. 7(b). After cycling, no morphological changes in the Au film at the notch root could be observed in the SEM, suggesting that the Au–Si eutectic temperature of 363 $^\circ$C had not been reached. Since the brittle–ductile transition temperature of silicon is at least 700 $^\circ$C, and increases with increasing strain rates [34], polysilicon is expected to behave as a brittle material in these experiments.

The final possible explanation is grain boundary plasticity. At the polysilicon grain boundaries, there could well be a thin region of “amorphous” silicon that is susceptible to a non-conventional form of plastic deformation in shear [35]. Even in the absence of an amorphous material, the bonding at the grain boundaries will be imperfect compared to the bulk and could be susceptible to shear deformation. This grain boundary plasticity could produce local residual stresses that will depend on the local microstructure and which will affect apparent strengths. This model is discussed with respect to the strengthening behavior in the next section.

4.1. Plastic flow in amorphous silicon and the Drucker–Prager model

A possible explanation for the strengthening is that the cyclic loading leads to some sort of plastic deformation near the root of the notch, which gives rise to residual compressive stresses upon unloading. The compressive pre-stress would result in a higher apparent strength when the structure is subsequently loaded in monotonically increasing tension. This possibility is supported by the molecular dynamics calculations performed by Demkowicz and Argon [35], which show that amorphous silicon can undergo a non-traditional form of plastic deformation. If the polysilicon grain boundaries can be considered a thin
The molecular dynamics simulations involved shear loading at constant volume. Using the Stillinger-Weber empirical potential for silicon [36], Demkowicz and Argon created amorphous samples with four different initial densities by "melting" the diamond cubic crystal structure, and then slowly quenching the liquid at different rates using constant pressure molecular dynamics. For four values of initial density, \(\rho \), the calculated deviatoric stress and pressure as functions of deviatoric strain are shown in Fig. 10. The plasticity is very sensitive to the density of the initial unstressed amorphous silicon, and can produce either dilatancy or compaction (the pressure in the constant volume simulations increases or decreases). For the lowest density simulation, elastic loading terminated with a sharp yield phenomenon that was followed by significant strain softening and concomitant large drop in system pressure. As pointed out by Demkowicz and Argon, the pressure drop, which implies compaction in a constant pressure simulation, is opposite to the behavior of metallic glasses, which expand during deformation. For the two higher densities, the plastic deformation is associated with an increase in pressure, implying that under constant pressure the silicon would dilate. The plastic deformation predicted by the atomistic calculations can be approximated using the Drucker–Prager [37] plasticity model that has been applied to geo-materials (such as rock, concrete, and soil) whose shear strength depends on pressure and whose plastic deformation involves dilatation. The yield surface (function), schematically shown in Fig. 10(c), is defined as

\[
F = \sigma_e - p \tan \beta - c = 0, \tag{2}
\]

where \(\sigma_e = \sqrt{\frac{3}{2}} \sigma_{ij} \sigma_{ij} \) is the equivalent (von Mises) stress, \(\beta \) is the friction angle, and \(c = \sqrt{3} \tau_0 \) is the cohesion of the material written in terms of the shear strength \(\tau_0 \). \(\beta \) determines the sensitivity of the shear strength to the pressure.

The plastic (flow) potential is

\[
G = \sigma_e - p \tan \psi, \tag{3}
\]

where \(\psi \) is the dilatation angle, which controls the level of unit volume change. The increments of plastic strain are obtained from the potential as

\[
d \varepsilon_p^{ij} = d \lambda \frac{\partial G}{\partial \varepsilon^{ij}}, \tag{4}
\]

where

\[
d \lambda = \frac{d p}{1 - \frac{1}{4} \tan \psi} \tag{5}
\]

and \(d \varepsilon_p = \sqrt{\frac{3}{2}} d \varepsilon_p^{ij} d \varepsilon_p^{ij} \) is the equivalent plastic strain increment.

The deviatoric stresses and pressures (Fig. 10) as functions of deviatoric strain [35] were used as inputs into the finite element program ABAQUS [38] to calibrate values of friction angle \(\beta \), dilatation angle \(\psi \), and relevant isotropic hardening parameters, using a two-dimensional plate, comprised of four-noded quadrilateral elements, subjected to a shear deformation. The elastic modulus of the amorphous silicon was obtained as 150 GPa [35], and Poisson’s
ratio was assumed to be 0.22. For initial density $\rho = 2342$ kg/m3, the deviatoric stress-strain response shown in Fig. 10(a) was used as input into the finite element calibration model. The best fit to the pressure-deviatoric strain response were provided by the combination $\beta = 8.5^\circ$, $\psi = -35^\circ$, as shown in Fig. 10(b). Because the friction and dilatation angles are not equal, the plasticity model is nonassociated, and the material stiffness matrices are not symmetric.

As explained subsequently, strengthening is predicted by both dilating and contracting amorphous grain boundaries. The demonstrative simulations to be presented next were performed using the Drucker–Prager parameters corresponding to a relatively low density amorphous silicon, which would compact when deformed.

The plasticity model was used to simulate cyclic loading experiments on the notched specimen shown in Fig. 1. This geometry is representative of the experimental specimens. The stresses near the root of the notch are controlled by the applied traction, σ. Two finite element models were used. The first, shown in Fig. 11, is a local–global model that retains a discrete description of the crystalline structure surrounding the notch, while efficiently incorporating the far-field behavior through a homogenized polysilicon with a Young’s modulus equal to 160 GPa and a Poisson’s ratio equal to 0.22. The randomly sized crystals, generated through Poisson–Voronoi tessellation [39], have linear dimensions in the range 200–300 nm, and are separated by 1 nm thick grain boundaries made of amorphous silicon. It is noted that the finite element model does not include the three-dimensional geometry of the fine grained polysilicon. Instead, it is a demonstrative plane stress model with columnar grains.

With respect to the loading described in Fig. 3(d), the failure map shown in Fig. 9(b) is explored by applying 500 cycles to each of four combinations of mean stress and stress amplitude: (i) $\sigma_m = 0.8$ GPa, $\Delta\sigma = 1.6$ GPa (small tensile mean stress, small stress amplitude), (ii) $\sigma_m = -1.0$ GPa, $\Delta\sigma = 1.6$ GPa (small compressive mean stress, small stress amplitude), (iii) $\sigma_m = 2.0$ GPa, $\Delta\sigma = 2.0$ GPa (large tensile mean stress, small stress amplitude), (iv) $\sigma_m = -3.5$ GPa, $\Delta\sigma = 2.0$ GPa (large compressive mean stress, small stress amplitude).

In agreement with the experimental results, the structure remained elastic for cases (i) and (ii); no residual stresses developed upon removal of the cyclic loading. Therefore no strengthening would be observed upon subsequent tensile loading.

Figs. 11(b) and (c) show the distributions of the stress component σ_{22} near the root of the notch for cases (iii) and (iv). It was observed that after 500 cycles, modest levels of compressive stresses develop; ~ 0.5–1 GPa for the tensile mean stress and ~ 0.1–0.3 GPa for the compressive mean stress. However, it was also observed during the finite element simulations that the rate of compressive stress increase was actually higher for the compressive mean stress (case (iv)) toward the end of the 500 cycles.

As for the local–global model, no residual stresses develop for the first two cases. Fig. 12 shows the results for $\sigma_m = 2.0$ GPa, $\Delta\sigma = 2.0$ GPa and $\sigma_m = -3.5$ GPa, $\Delta\sigma = 2.0$ GPa. Both cases produce significant residual compressive stresses; ≈ 1.4 GPa maximum compression for the case of tensile mean stress, and ≈ 0.9 GPa maximum
596 compression for the case of compressive mean stress.
597 Remarkably, the levels of compressive stress are of the same order as the experimentally observed strengthening.
598 To determine whether the predictions are sensitive to the dilatant/compactive nature of the plastic deformation, the simulations were repeated with all parameters kept the same except for the dilatancy angle, which was assumed as $\psi = +35^\circ$ (the sign was switched to produce dilatancy).
599 The finite element simulations revealed that the residual stress distribution was very similar to that predicted by the previous model, the largest value of residual compressive stress being slightly higher (1.43 GPa, compared to 1.39 GPa). The insensitivity to the sign of the volume change results from the fact that the deviatoric strains remained less than 0.1 for the values of stress applied during the experiments and simulations. As shown in Fig. 10, the dilatation in this range is insignificant. What is important is that sufficiently high levels of plastic deformation occur. Therefore, the level of strengthening is not expected to be sensitive to the assumed grain boundary thickness.

5. Conclusions

Polysilicon displays fatigue behavior. Cyclic loading affects the polysilicon specimens in such a way that the monotonic bend strength is altered; these effects do not occur for sub-critical monotonic loading at similar stress levels. Fatigue stressing can generate both weakening and strengthening, depending on the applied stress levels. A relatively small $\Delta \sigma$ combined with a high σ_m (tensile or compressive) leads to strengthening, while a relatively large $\Delta \sigma$ results in weakening. We present a model that predicts levels of cyclic loading-induced strengthening of polysilicon MEMS structures that are qualitatively and quantitatively consistent with experimental data. The apparent strengthening results from the residual compressive stresses that result from the plastic deformation of amorphous grain boundaries.

Acknowledgements

We thank Zentaro Akase for the polysilicon TEM study, John Sears for the Pd TEM study, and Ali Argon for useful discussions. This work was sponsored by DARPA under contract No. N00014-00-1-0881.

References

[34] St. John C. Philos Mag 1975;32:1193.
[38] ABAQUS, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI.