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Abstract

Two approximations are introduced and assessed that simplify the analytical and numerical treatment of curvilinear cracks in
two-dimensional linear elastic fracture-mechanics analyses. The ®rst involves the approximation of the crack trajectory with three

segments that maintain a su�ciently accurate description of the near-tip geometry, including the tip's tangent. The second is associated
with the use of only two segments, one of which speci®es the tip's tangent. Results calculated for several con®gurations suggest that
both approximations lead to accurate stress intensity factors and energy release rates, and can, therefore, be of great use in Monte

Carlo-based characterization of random crack growth in brittle materials. An analytical expression is presented for the stress
intensity factors of a curvilinear edge crack subjected to uniform far-®eld tension. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Brittle fracture is associated with tortuous crack
paths, signi®cant scatter of fracture toughness para-
meters, and scale e�ects. Recent attempts have been
made to model this phenomenon by using statistical
fracture mechanics (SFM) [1,2], which assumes that (1)
a crack propagates along a random path of least resis-
tance, (2) incremental propagation is governed by the
Gri�th energy criterion applied point-wise along the
crack trajectory, and (3) the fracture energy is a random
parameter that re¯ects, on a macroscale, the material
microstructure.
SFM calculations can be conveniently performed, as

described in [1], by using Monte Carlo simulations,
whereby (1) the crack trajectories are simulated and the
associated point-wise random (or perhaps anisotropic,
with randomly orientated principal directions) fracture
energy (resistance) is generated, (2) an elasticity analysis
is used to calculate the crack's stress intensity factors
and energy release rate as it propagates along the tra-
jectory, (3) the energy release rate at every point is
compared to the random fracture energy, and (4) sta-
tistical averaging is performed of relevant parameters

such as e�ective fracture toughness and critical crack
length.
The approach taken in [2] di�ers from the above in

that the random fracture energy is ®rst assigned,
according to a chosen distribution, to every point in the
solid, and the trajectory is determined as an output to
the simulation, wherein the crack is grown incrementally
and follows the path of least resistance. A schematic of a
propagation increment is shown in Fig. 1, where a crack
in a polycrystalline solid terminates at a grain bound-
ary. The direction of propagation into the next crystal is
determined by comparing, for each possible direction,
the calculated energy release rate with the material's
resistance. It should be noted that in Refs. [1,2] the
elastic anisotropy of each crystal is neglected.
SFM thus relies on the capability of determining the

stress intensity factors and energy release rates of curvi-
linear cracks in ®nite geometries. Since the analyses are
typically performed incrementally, crack-tip parameters
of piece-wise linear cracks are of particular interest.
Therefore, this paper focuses on approximating stress
intensity factors of cracks comprised of straight segments;
it is expected that the conclusions obtained for such con-
®gurations will carry over to curved paths. Modeling the
realized paths is computationally prohibitive, and certain
approximations are desirable. This paper introduces
two types of approximations, and quanti®es the errors
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associated with their use through speci®c examples. The
®rst involves the approximation of the actual crack path
using three straight or curved segments. The second
involves only two segments. The results justify the use
of simpli®ed geometries to calculate crack-tip parameters
of curvilinear cracks in in®nite and semi-in®nite geome-
tries, and to reduce the computational requirements
needed to characterize stochastic crack propagation.
These approximations have been used in [1] and [2].

In [2], a three segment approximation to the crack tra-
jectory is employed. Fig. 2a is a schematic of a six
straight line crack trajectory initiating at point 0 and
ending at point i. The associated three segment approx-
imation is shown in Fig. 2b; four segments are elimi-
nated by connecting point 0 to point iÿ 2 (the segment
second closest to the tip). The motivation for this
approximation comes from previously calculated results
[3] that suggest that the stress intensity factors and
energy release rate are sensitive to only the details of the
crack shape in the vicinity of the crack tip. These results
are actually recalculated and presented in this paper.
In [1], a two segment approximation is employed,

which, for the example in Fig. 2, would eliminate the
segment second closest to the tip, and maintain only the
kink that de®nes the crack tip's tangent by connecting
point 0 to point iÿ 1. This approximation, as will be
illustrated in this paper through several examples, is
appropriate for most con®gurations. However, it will also
be shown through the analysis of the con®guration con-
sidered in [3], that it can also lead to misleading results.

2. Fundamental solutions and singular integral equations

This section brie¯y describes the Green's function
formulation of the two dimensional elastic crack ana-

lyses used to calculate the crack-tip parameters of sev-
eral con®gurations. The crack(s) is modeled as a
continuous distribution of dislocations. Consider ®rst a
crack in an in®nite (xÿ y) plane. The fundamental solu-
tion represents the stress components (in the rÿ # polar
coordinate system) at a generic point z, within an in®nite
body, produced by a dislocation located at point zo

�## � i�r# � b
1

zÿ z0
� e2i#

zÿ z0

zÿ z0� �2
� �

� b
1

zÿ z0
� e2i#

zÿ z0

� � �1�

where z � x� iy; i � �������ÿ1p
; the complex constant b is

related to the Burgers vector of the dislocation �ur� �
i�v#� through

b � � �ur� � i�v#�� �ei#
�i �� 1� � �2�

� � 3ÿ 4� for plane strain, � � �3ÿ ��=�1� �� for plane
stress, � is the shear modulus, and � is Poisson's ratio.
Introduce a continuous distribution of dislocations

along the curve � representing the crack, whose density

Fig. 1. A crack terminating at a grain boundary, and potential exten-

sion directions.

Fig. 2. (a) Incremental trajectory and (b) three segment approxima-

tion.
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at each point is an unknown complex function � z� �,
de®ned as

� z0� � � @b

@z0
� �

�i �� 1� �
@

@z0
ei# �ur� � i�v#�� �� � �3�

where # is the angle between the tangent to � and the x-
axis. Then the stress at point z is symbolically given by

�## � i�r# �
�

�

� z0� �K1 z; z0� �dz0 �
�

�

� z0� �K2 z; z0� �dz0 �4�

where the kernels K1 and K2 are the functions that
appear within the parentheses in Eq. (1). Suppose that a
far-®eld load produces, in the uncracked solid, stress
components �1

##
� i�1

r#
along �. The zero-traction con-

dition along the crack surfaces is enforced through the
Cauchy singular integral equation of the ®rst kind�smax

0

� s� �K1 v; s� � � � s� �K2 v; s� �� �
ds � �1## v� � � i�1r# v� � �5�

where � and s are, respectively, the arc-length para-
meters which identify z and zo along the �, and smax is
the length of the crack.
The solution to Eq. (5) is calculated using the Erdgan-

Gupta method [4], which relies on certain properties of
Chebyshev polynomials. To this end, Eq. (5) is normal-
ized along the interval (ÿ1,1) and rewritten as

��1
ÿ1
� �� �K1 �; �� � � � �� �K2 �; �� �� �

d� � �1## �� � � i�1r# �� � �6�

The details for calculating the relations between the
integration/collocation points in the integration scheme
and the arc-length parameters can be recovered in [2]
and [3]. It is important to note that the formulation
leads to numerical instabilities if the crack trajectory is
associated with rapid changes in curvature. For a tra-
jectory comprised of n straight segments, a modi®cation
to the formulation is introduced, wherein the traction-
free boundary condition along the crack is enforced
through coupled integral equations for n unknown dis-
location densities (one for each segment), with the cor-
rect asymptotic behavior enforced at the junctions of
the segments. This procedure will henceforth be referred
to as the multiple integral equation method (MIEM).
If both tips of the crack are closed, a unique solution

of Eq. (6) can be found by enforcing single valued dis-
placements, i.e.�smax

0

��s�ds � 0 �7�

Moreover, for closed cracks � �� � is square root singular
at both crack tips, and can be represented in the form

� �� � � �reg �� ��������������
1ÿ �2

p �8�

where �reg is a bounded function whose value at each
crack tip is proportional to the stress intensity factors at
that tip. For example, the nondimensionalized stress
intensity factors at the right end (s � �1) become

K̂II � iK̂I � KII � iKI

�1xx
����������������
�smax=2
p � ÿ2� i�reg �1� �

ei#0

� �
�9�

where smax is the crack length, and #0 is the angle
between the tangent at the crack-tip and the x-axis.
For a semi-in®nite crack, the zero-traction condition

renders the singular integral equation homogeneous,
and is satis®ed by all functions of the type

� s� � � C
�reg s� �������ÿsp �10�

where C is a constant and s is the arc-length measured
from the crack-tip. In this case a far-®eld loading is
introduced by writing the unknown dislocation density as

� s� � � �reg s� �������ÿsp ÿ
K1I 1ÿ eÿs

2
� �

2�i
�����������ÿ2�sp �11�

The ®rst term on the right hand side of Eq. (11) takes
care of the square root singularity at the crack-tip, while
the second term guarantees that the crack opening dis-
placements are consistent with those produced by the
nominal stress intensity K1I : Again the normalized
stress intensity factors are proportional to the regular
part of the dislocation density

K̂II � iK̂I � KII � iKI

K1I
� �2��3=2 i�reg s � 0� �

ei#0

� �
�12�

A similar procedure can be used for cracks in semi-
in®nite planes (edge-cracks, for example). The funda-
mental solution in this case is a dislocation in a half-
plane, and the kernels K1 and K2 in Eqs. (4)±(6) are
replaced, respectively, with the terms within the par-
entheses in the following equation

�## � i�r# � b

�
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zÿ z0� �2
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� b

�
ÿ 1

zÿ z0
� 1

zÿ z0
ÿ 1

zÿ z0
� zÿ z0
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2 zÿ z� �
zÿ z0� �2 �

2 zÿ z� � z0 ÿ z� �
zÿ z0� �3 � z0 ÿ z
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1

zÿ z0
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The stress intensity factors at the tip (s � �1) are given
by

K̂II � iK̂I � KII � iKI

�1xx
������������
�smax
p � ÿ 2����

2
p i�reg �1� �

ei#0

� �
�14�

3. Results

3.1. Semi-in®nite crack with sinudoidal near-tip shape,
in in®nite plane, under mode-I loading

The con®guration of the ®rst problem considered is
shown in Fig. 3. A semi-in®nite crack with a sinusoidal
near-tip shape is loaded by a far-®eld stress intensity
factor K1I : This problem was solved in [3] using the
procedures described above. As discussed subsequently,
it was the results calculated for this geometry that
suggested that stress intensity factors of curvilinear
cracks can be estimated with su�cient accuracy by
describing only the details of the near-tip region. This
problem is recalculated here to check the numerical
solution algorithm and to further explore the physical
results.

The number of complete waves is k. Two transitional
segments are introduced, the ®rst to connect the waves
to the main crack, the second to maintain a horizontal
tangent at the tip of the crack. The fact that the tip's
tangent is aligned with the main crack will be revisited
later. The coordinates of the crack are de®ned through
the equations

y � A

2

cos
�x

L

� �
ÿ 1 ÿL < x < 0

cos
�x

L

� �
ÿ�2k� 2�L < x < ÿL

cos
�x

L

� �
� 1 ÿ�2k� 3�L < x < ÿ�2k� 2�L

8>>>><>>>>:
�15�

and thus stress intensity factors and energy release rate,
normalized with respect to the applied values, depend
only on k and A=L. The calculated crack-tip parameters
presented henceforth are normalized with respect to the
far-®eld values.
Fig. 4 illustrates, for k � 0 and A=L � 2, the ¯uctua-

tion of the energy release rate as the crack-tip moves
along its curvilinear path. Also shown is the average
energy release rate Gav: It is observed that for this case
there is a reduction of more than ®fty percent in crack-
tip driving force. Qualitatively similar results (not
shown here) were calculated for other k and A=L values.
Fig. 5 shows, for k � 0, the dependence on A=L of the
stress intensity factors and energy release rate as the
crack crosses the x-axis. Recall that in this position the
crack tip has a horizontal tangent. It is clear that the
crack shape can signi®cantly e�ect the crack-tip para-
meters. However, as shown in Table 1 (for A=L � 1),
the crack-tip parameters do not depend on the number
of waves. As mentioned previously, this result moti-
vated the previously described three segment approx-
imation in [2].

Fig. 3. Semi-®nite crack with sinusoidal near-tip under nominal mode-I

loading.

Fig. 4. Energy release rate of mode-I loaded semi-in®nite crack with

sinusoidal near-tip shape, k � 0, A=L � 2.
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Fig. 5, which is associated with 500 integration points
in the Erdogan±Gupta method (and using double
precision on a Sun Ultra-2 work station), also illustrates
that the numerical calculations become unstable for
relatively large values of A=L. In [3] the calculations
were performed using a computer whose precision is
approximately double that used here, and the instabil-
ities were not observed (private communication with
A.A. Rubinstein).
This speci®c example also demonstrates that a two

segment approximation can lead to misleading results.
Indeed, the two segment approximation to this problem,
as used in [1], would reduce the geometry to a straight
semi-in®nite crack (one long segment that represents the
main crack, and one short segment that represents the
horizontal tip tangent), and the e�ects of near-tip shape
would be completely missed! On the other hand, the
three segment approximation would consist of a semi-
in®nite crack (the ®rst segment), a transition wave (the
second), and a horizontal tip (the third). Table 1 justi®es
the approximation.
The following result is new. The calculated results

essentially provide the ratio of crack-tip energy release
rate to applied energy release rate

F�s� � G

G1
�16�

where s is the arc-length parameter that de®nes the
position of the crack-tip. Assume that the intrinsic
fracture energy is a constant GIc: Then the reciprocal of
function F, shown in Fig. 6 for k � 1 and selected values
of A=L, represents the normalized applied energy
release rate that is in equilibrium with the crack-tip
position. Furthermore, the peak of this function is a
measure of the apparent toughness increase that results
from the tortuous path, de®ned by A=L. As shown in
Fig. 7, amazingly the crack-path toughening follows,
with su�cient accuracy, the relation

G1critical

GIc
� eA=L �17�

Table 1

Stress intensity factors for mode-I loaded semi-in®nite crack with

sinusoidal near-tip shape, A=L � 1

k KI=K
1
I KII=K

1
II

1 0.94 ÿ0.052
2 0.94 ÿ0.055
3 0.95 ÿ0.054
4 0.95 ÿ0.051
5 0.95 ÿ0.054

Fig. 6. Energy release rate of mode-I loaded semi-in®nite crack with

sinusoidal near-tip shape that is in equilibrium with crack-tip position,

k � 1.

Fig. 7. Crack-path toughening of mode-I loaded semi-in®nite crack

with sinusoidal near-tip shape,.

Fig. 5. Crack-tip parameters for mode-I loaded semi-in®nite crack

with sinusoidal near-tip shape, k � 0.
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3.2. Kinked inclined edge-crack in a semi-in®nite plane
under uniform far-®eld tension

The accuracy of the MIEM is assessed through the
inclined kinked edge crack under uniform far-®eld
tension, shown in Fig. 8. Table 2 compares, for �1 �
90�; the calculated (using 50 integration points) nor-
malized stress intensity factors

FI � KI

�
������
�b
p FII � KII

�
������
�b
p �18�

with those presented in [5] (as calculated in [6] using a
body force method). It is observed that the agreement is
excellent, and provides con®dence in the treatment of
the discontinuous tangent at the junction of the straight
line segments. An additional check is provided next
for cases where the number of segments is relatively
large.

3.3. Zig-zag edge crack in semi-in®nite plane under
uniform far-®eld tension; two and three segment
approximation

Fig. 9(a) shows a zig-zag edge-crack, comprised of N
segments, in a semi-in®nite plane subjected to a remote
uniform stress parallel to the edge. The two and three

segment approximations to this geometry are shown,
respectively, in Fig. 9(b) and (c). The normalized stress
intensity factors

GI � KI

�
���������
�Na
p GII � KII

�
���������
�Na
p �19�

calculated using the approximate geometries are com-
pared in Tables 3 and 4 with those of the actual trajec-
tory, presented in [5] (as calculated in [7] using a body-
force method). For N � 5, the stress intensity factors of
the actual con®guration were also calculated using the
MIEM, and are presented in parentheses. It is observed
that both approximations are associated with relatively
small errors. However, recall that the two segment
approximation can, as discussed previously, lead to
misleading results.

3.4. Inclined zig-zag edge crack

The previous example is associated with a crack
whose plane, on the average, is perpendicular to the
applied stress. To investigate the e�ects of an average
plane not perpendicular to the applied stress, results for
the inclined zig-zag crack shown in Fig. 10 are pre-
sented, for � � 60� in Table 5. It is observed that the
approximate stress intensity factors are in excellent

Fig. 8. A kinked inclined edge-crack in a semi-in®nite plane under uniform tension.

Table 2

Stress intensity factors of kinked edge-crack (�1 � 90)

�2 (deg.) c1 c2 FI FII FI [5] FII [5]

30 0.25 1.0 0.462 0.336 0.459 0.338

45 0.25 1.0 0.705 0.365 0.703 0.365

60 0.25 1.0 0.920 0.306 0.919 0.306

30 0.5 1.0 0.463 0.337 0.463 0.337

45 0.5 1.0 0.705 0.365 0.704 0.365

60 0.5 1.0 0.920 0.306 0.919 0.306

30 0.75 1.0 0.463 0.340 0.465 0.340

45 0.75 1.0 0.705 0.365 0.705 0.366

60 0.75 1.0 0.920 0.304 0.919 0.304

30 0.9 1.0 0.464 0.339 0.468 0.342

45 0.9 1.0 0.706 0.357 0.707 0.359

60 0.9 1.0 0.921 0.295 0.921 0.296
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agreement with those of the actual con®guration, which
were calculated using the MIEM.

4. Conclusions

Approximations have been introduced that simplify
calculations of stress intensity factors and energy release
rates of curvilinear cracks in in®nite and semi-in®nite
two dimensional con®gurations. The results calculated
for speci®c examples associated with piece-wise linear
cracks suggest that two and three segment approxima-
tions of a crack path are highly accurate, and could be
used to reduce the computations needed to characterize,
using Monte Carlo techniques, random crack propaga-
tion in brittle materials.
In fact, the two segment approximation can be used,

as follows, to obtain an analytic expression for the stress
intensity factors of an arbitrarily shaped edge crack

Fig. 9. (a) Zig-zag edge-crack in semi-in®nite plane under uniform

tension; (b) three segmented approximation; (c) two segment approx-

imation.

Table 3

Normalized stress intensity factors of a zig-zag edge-crack: three seg-

ment approximation

N GI GII GI [5]

(MIEM)

GII [5]

(MIEM)

4 0.709 0.353 0.704 0.355

5 0.702 ÿ0.343 0.708 (0.711) ÿ0.349 (ÿ0.348)
6 0.714 0.344 0.707 0.348

7 0.711 ÿ0.339
8 0.718 0.338

9 0.717 ÿ0.335
10 0.722 0.333

Table 4

Normalized stress intensity factors of a zig-zag edge-crack: two seg-

ment approximation

N GI GII GI [5] GII [5]

3 0.705 ÿ0.366 0.704 ÿ0.360
4 0.705 0.363 0.704 0.355

5 0.705 ÿ0.365 0.708 ÿ0.349
6 0.706 0.360 0.707 0.348

7 0.706 ÿ0.363
8 0.707 0.357

9 0.707 ÿ0.360
10 0.708 0.355

Fig. 10. Inclined zig-xag edge-crack in semi-in®nite plane under uni-

form tension; results calculated for � � 60�.

Table 5

Normalized stress intensity factors of inclined zig-zag edge-crack: two

and three segment, approximations

N GI

(MIEM)

GII

(MIEM)

GI

(two

segment)

GII

(two

segment)

GI

(three

segment)

GII

(three

segment)

5 0.341 ÿ0.346 0.343 ÿ0.355 0.340 ÿ0.345
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under uniform far-®eld tension. De®ne the crack path
through function y x� �, where x is perpendicular to the free
surface, de®ned by x � 0. Note that at any point along the
crack path, x0; y0� �, the tip's tangent is de®ned by tan
� � y0�x0�. The stress intensity factors of a straight
inclined edge crack under uniform tension are given by [5]

K�I � HI����
������
�a
p �20�

K�II � HII����
������
�a
p �21�

where � represents the angle which the crack makes
with the free surface, and functions HI and HII are
tabulated in [5] (these can be easily converted to poly-
nomials). This edge crack is used as the ®rst of the two
segments in the two segment approximation. Therefore
at any point along the crack path, tan� � x0=y0. The
second segment is now taken as a small kink orientated
at an angle � with respect to the original direction; the
stress intensity factors of this extension can be approxi-
mated by [8]

KI��; �� � 1

4
3 cos

�

2
� cos

3�

2

� �
K�I

ÿ 3

4
sin

�

2
� sin

3�

2

� �
K�II

�22�

KII��; �� � 1

4
sin

�

2
� sin

3�

2

� �
K�I

� 1

4
cos

�

2
� 3 cos

3�

2

� �
K�II

�23�

Eqs. (22) and (23) are proposed as the stress intensity

factors of an arbitrarily shaped curvilinear crack. The
authors are currently assessing the accuracy of these
approximations.
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