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Abstract--This paper presents the solution of a certain mixed problem for a bimaterial interface 
containing a cut. In the plane, elastostatic analysis displacements are prescribed on the lower edge 
of the cut and external stresses are applied on its upper edge. Using complex variable techniques, 
analytical expressions are derived for all physical quantities, including the compliance of the anchor, 
the stress field, and the stress singularities at its edges. Selected numerical values are presented for 
these quantities as functions of elastic mismatch. The developed solution can be used to model a 
vertically loaded rigid anchor, unbonded on one side, embedded along the interface between two 
elastic materials. 

1. INTRODUCTION 

The mechanical behavior of anchors embedded in brittle materials is an important con- 
sideration for many critical design situations. Most of the analytical models that have been 
developed to estimate the mechanical response of embedded anchors focused primarily on 
stress distributions and load deflection behavior (Sherman, 1940; Muki and Sternberg, 
1970 ; Butterfield and Banerjee, 1971 ; Keer, 1975 ; Selvadurai, 1976 ; Bosakov, 1980 ; Luk 
and Keer, 1980 ; Pak and Gobert, 1990). Recent efforts to predict the pull-out capacity of 
anchor bolts have included the cracking that often emanates from the edge(s) of the anchor 
and grows towards a free surface (Ballarini et al., 1986, 1987). 

In the aforementioned analyses the anchor was surrounded by a homogeneous isotropic 
linear elastic matrix. This paper presents the solution to the plane elastostatics problem 
shown in Fig. 1 (a). A very thin rigid plate is embedded along the interface between two 
dissimilar semi-infinite planes and is loaded by a vertical force. One side of the plate is 
debonded (from the material in the upper half-plane), while the other side is perfectly 
bonded to the material in the lower half-plane. Because the plate is assumed very thin, its 
effects on the surrounding medium can be approximated with those produced by a bima- 
terial interface containing a cut, with displacements prescribed on the lower edge and 
stresses prescribed on the upper edge. Of particular interest is the effect of elastic mismatch 
on the compliance of the anchor, the stress field, and the stress singularities at the edges of 
the anchor. 

The corresponding plane problem for the homogeneous medium was first solved by 
Sherman (1940) using singular integral equations. An omission in his solution was pointed 
out by Muskhelishvili, who derived the solution by reducing the problem to two uncoupled 
Hilbert problems. The solution to the penny-shaped cut was presented by Keer (1975). An 
interesting feature of these solutions is that there are two stress singularities at the edge of 
the plate, one equal to - t / 4  + i log ~c/4n, the other to -3 /4  + i log x/4rc, where ~c = 3 -4v  
for plane strain and ~c = (3-v)/(1 --v) for plane stress. 

The solution presented in this paper relies on a set of potentials that reduce the 
boundary conditions to a Hilbert problem, whose solution is obtained in closed form. These 
potentials are presented in the following section. 
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Fig. 1. (a) Thin anchor along a bimaterial interface ; (b) bimaterial interface containing a cut wi 
stresses (displacements) prescribed on upper (lower) edge. 
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Fig. 2. ayy/P for plane strain (#2/#1 = 1, Vl = •2 ~ 0.2). 
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2. A N A L Y T I C  C O N T I N U A T I O N  M E T H O D  F O R  A B I M A T E R I A L  I N T E R F A C E  

This section presents an analytic continuation procedure that can be used to formulate 
problems associated with a bimaterial interface containing a cut. The advantage of  the 
method is that it eliminates the need to develop the Green's functions for a dislocation and 
a point force at the interface, and the associated singular integral equations. The method 
essentially generalizes the procedure outlined in Muskhelishvili's treatment of  Sherman's 
problem. 

Consider the class of plane elastostatics problems associated with the upper half-plane 
S + with moduli #1 and v~ and the lower half-plane S with moduli #2 and Y2, where #~ and 
v~, i = 1,2, denote the shear modulus and Poisson ratio, respectively. 

The stresses and displacements may be expressed in terms of the Muskhelishvili poten- 
tials (Muskhelishvili, 1953) as follows: 

(~yy - i~xy), = e , ( z )  + ~ , ( z )  + ze;(z) + ~t',(z) 

(~yy + ~xx), = 2[qbi(z) + q)i(z)] 

2#i + i = ~,q)~(z) -- [qb,(z) + z~,(z)  + uric(z)]. 
i 

(1) 

(2) 

(3) 

The subscript i (i = 1,2) denotes "in region Si" ; q~l and ~1 correspond to the potentials 
for the upper half-plane and (I) 2 and ~2 correspond to the potentials for the lower half- 
plane. Moreover, z is the complex variable x +  iy, the prime denotes differentiation with 
respect to z, and an overbar denotes complex conjugation. 

As shown by Mukai et al. (1990), for such interface problems it is more convenient to 
introduce additional "jump" potentials as follows. Making use of the fact that if f ( z )  is 
analytic for z in region R, then f ( z )  - f ( z )  is analytic for ~ in region R, the following 
analytic potentials are constructed : 

~s(z) = ~ ~ l ( z ) - [@2(z )+zc~ i ( z )+%(z ) ]  Z~Sl  
[q)2 (z) - [01 (z) + zF~[(z) + q?l (z)] z e $2 (4) 
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Fig. 3. a x / P  for plane strain ( ] ~ 2 / / J l  = 1, vl = v2 = 0.2). 
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Fig. 4. ~xx/P for plane strain (#2/#1 = 1, vl = v2 = 0.2). 
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f ~1 (Z)~- ~ 2  [1~)2 (Z) zeS, rid(z) 2-~ ~'  + zr~;(z) + Ce2(z)] 
= ( 5 )  

In  t e rms  o f  these  po t en t i a l s  the  d i scon t inu i t i e s  in stresses a n d  d i sp l acemen t s  ac ross  the  

in te r face  a re  g iven  by  

(ayy -- i~xy) + --  (%y -- iGxy) = ns  + (x) --  f ~  (x) (6) 

~x + i ~ x )  -- ~x + i~x  = a+(x)- - f~:(x) .  (7) 

T h e  supersc r ip t  + ( - - )  r ep resen t s  t he  l imi t  as the  in t e r f ace  is a p p r o a c h e d  f r o m  r e g i o n  

$1 ($2). I t  is o b v i o u s  f r o m  these  last  t w o  e q u a t i o n s  t h a t  the  d i scon t inu i t i e s  in the  po t en t i a l s  

represen t ,  respec t ive ly ,  fo rce  a n d  d i s l o c a t i o n  d i s t r i bu t i ons  a l o n g  the  in te r face .  E q u a t i o n s  
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Fig. 5. %y/P for plane strain ( ~ 2 / ~ 1  = 5 ,  ])1 = ]12 = 0.2). 
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(4) and (5) can be readily inverted to recover the potentials that appear in eqns (1)-(3). 
The resulting representations become 

(I)l (Z) - -  /21 @-#2Xl  

2/21122 [--/(2 -- ] 
- -  [ - ~ 2  f~(z) +rid(z)J  -q)~ (z) -zqb'l (z) (9) I'I'/1 (Z) - -  ]A2 ..~_~1K72 

2#1 # ~  [ ~  f~(z) + f~d (z)] (10) 
(I)2(Z) - -  # 2  J - # 1 / ~ 2  

2"1P2 [ - I ¢ 1 -  ] 
1"I'/2(Z) -- ~I "1-~2/¢1 2~--~1 ~ '~s(Z)- l f - f id(z)  - -  (I)2 (Z) - -  Z(I)I (Z)" ( 1 1 )  

3. BOUNDARY CONDITIONS AND REDUCTION TO UNCOUPLED HILBERT PROBLEMS 

Equations (6) and (7) clearly demonstrate the usefulness of  the jump potentials for 
solving problems involving an interface containing a cut. For example, the interface c r a c k  

can be treated by setting the discontinuity in stress equal to zero and solving for the crack 
opening displacements. The solution of the r i g i d  l ine  i n c l u s i o n  problem, which was obtained 
by Ballarini (1990), can be derived by setting the discontinuity in displacement equal to 
zero and solving for the stress distribution along the rigid inclusion. 

The boundary conditions for the configuration shown in Fig. 1 (b) are written as 

#1 2p1#2 ~11(2 
- -  a~ + f~- (x) n;- (x) (ayy - -  iaxy) + = 0 = + 
]21 -~- ~'~2 KT1 ~['~1 "~- #21£1 #2  -t- #11(~2 

+ 2#1 #2 
n 2  (x), 

#2  "J-#1 J-Z2 
Ixl < 1,y = 0 (12) 

: ~xy/p 

: G2/Gl=5 
Vl=V2=0.2 

. . . . . . . . . . . . . . . . . . . . . . . . .  ; . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .  Plane S t r a i n  . . .  
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Fig. 6. axy/P for plane strain (]22/#1 = 5, V 1 = "92 = 0.2). 



284 R. Ballarini 

(OU ~Y)- #2/£2 2K~2#1# 2 /22/£1 
~xx + i~x = 0 -- nU (x) + n2  (x) + f~+ (x) #2 "-[- #1 K2 #2 "{- #1 R72 #I -[" #2 R~I 

2#1 #2 

#1 -F- #2KI 
~J-(x), Ixl < 1,y = 0 (13) 

(ayy--iaxy) + --(ffyy--irTxy ) -  .--- ~+(x ) - -~ '~s (X)  = 0, [xl > 1, y = 0 (14) 

(& .&'~+ (& &)- 
~x+Z~x)- 7x+i~x =ff~+(x)-f2~-(x)=0, Ixl>l,y=0. (15) 

Equations (12) and (13) represent the zero traction and rigid anchor conditions along 
the cut, respectively, while eqns (14) and (15) represent the perfect bond along the remaining 
part of the interface. A unique solution is obtained by applying the following equilibrium 
and single valued displacement conditions : 

~ [(rryy-i¢xy) + --(a.-iGy) ] dx = ~ (f2+ (x) -- f22- (x)) dx = P 
1 1 

(16) 

fl_l I (  ~ + i ~ )  + -  ( ~  +i~xx) I d x =  ; 1  (f~+(x)-f~2(x)) d x = 0 .  (17) 

It should be noted that the problem could have been reduced to eqns (12)-(17) in a 
less direct way by starting out with the Green's functions for a concentrated force and a 
discrete dislocation at the interface, replacing these with distributions, and writing the 
boundary conditions in terms of singular integral equations. Equations (12) and (13) 
would subsequently be recovered by applying the Plemelj formulae to the singular integral 
equations. 

Although it is not immediately apparent, eqns (12)-(15) define a Hilbert problem. 
That is, eqns (12) and (13) can be cast in the form 

[Af2s (x) + Bf~a (x)] + -- 2[Af~s(X) + Bf~a (x)]- = 0 (18) 

using the process outlined by Clements (1971), which involves multiplying eqn (13) by N, 
adding the result to eqn (12), and applying eqn (18). The procedure leads to the eigenvalue 
problem 

[f2~-(x) f2~-(x)] k(;t+m)# 2 _ # l ( ; t _ / c 2 m ) -  = O, (19) 

where m = (1 + fl)/(1 -fl) .  This last equation in turn provides the characteristic equation 

[ (c~-fl) c~-I-fl] /l+fl'~ 
+ 1- j + =0, (20) 

where e and fl are the Dundurs constants defined as 

#2(K1 -}- 1) --#1 (K2 "1- 1) = (21) 
#2(K1 --1- 1) --I-#1 (K2 -1- 1) 

# 2 ( ~  - 1 ) - - # ~  Qq - -  1) 

fl #2(~q + 1)+#1(~c2 + 1)" (22) 
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The two roots  o f  eqn (20), 21 and 22, are associated with two values o f  Ni (i = 1,2), 
which are obtained in terms o f  the eigenvalues th rough  eqn (19). These in turn  can be used 
to find the corresponding values o f  A~, B~. Some trivial manipulat ions  lead to 

-2e(1 - f l )  + K2 (1 +fl) N~ = (23) 
,~,~(1 -/~) + ~:2 (1 +/~) 

A~ = l+tc ,N~,  B~ = 2(#2--#1N~).  (24) 

At  this point  all the constants  that  appear  in eqn (18) have been determined. The 
solution o f  these equations is given by (Muskhelishvili, 1953) 

Ai~~s(Z ) -t.- Bi~d(Z) -= kiXi(z), i ---- 1,2, (25) 

where 

log (2i)  
Xi(z) = ( z + l ) - r ' ( z - - 1 )  7i-1, 7 i -  2rci (26) 

Thus  

k]B2XI (z) -k2B1X2(z) =klAzX1 (z) +k2A1X2(z) 
~s(Z) = , ~d(Z) = (27) A1B2 --A2B1 A1B2 --A2B1 

The identities 

z~i  + ( X )  = / ~ i ~ /  ( X )  = ( 1  + X ) - - X ' ( 1  - x )  7,-t e i ' ( ' , -  1) (28) 

and 

f )  ( l+x)-~'(1-x)  7 - 1 d x -  n (29) 
s m  ~y 

allows eqns (16) and (17) to be written as 

. . . . . . . . . . .  i . . . . . . . . . . . .  , . . . . . . . . . . .  i . . . . . . . .  
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Fig. 7. a.,~:,lP for plane strain (#2//~ = 5, v~ = v2 = 0.2)• 
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Fig. 8. ayy/P for plane strain (#2/#i = 0.2, v~ = vz = 0.2). 

0 
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B 2 e i~ (h - ' )  (1--A1 l) Bl_ e~%-1)(1- £21_) 1 
s ingy  1 sinrcv2 / ~ ' ~ = ] P ( A 1 B 2 - A 2 B 1 ) L ( ' ]  

(30) 
__ A 2 e ir~(~''-l) ( l - - 2 i  -1) Al e i~(~2-1) (1 - -~21)  ~ ( J  m J k 2  0 ' 

sin nyl sin rq'2 J 

which provides constants ki. All physical quantities can now be calculated with the closed 
form expressions for the potentials fls(z) and ~d(Z). In particular, the crack opening 
displacement at the middle of the anchor is given by 

o2/oi=o.2 
V1=V2=0.2 
Plane Strain 

! o.1 i 

0 

: o,o ~ p----o.o 
• ~ 'u< i ..... °'°27-~, .......... 

-2 -1 /D 0 1 2 

Y 

Fig. 9. axy/P for plane strain (#z/#~ = 0.2, vl = •2 : 0.2). 
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Fig. 10. axx/P for plane strain (#2//~1 = 0.2, vl = v2 = 0.2). 
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1 

A = ( f ~ 2 ( x ) - O a ( X )  dx = AIB2 --A2B1 

2F~(1 '71 " 1 + 7 1  ; - 1 )  ( ~ )  ' } x ' + A l k 2  ei~(>~-l) 1 -  1 2 F ~ ( 1 ' 7 2 ' 1 + 7 2 ; - 1 )  , (31) 

71 72 

where 2F1(1,7; 1 +7 ;  - 1 )  is the hypergeometric function that can be calculated from the 
identity 

2FI(1,T; l + y ; - - 1 )  = y k (-- 1)"(Yq-n) -~- 
n=0 

(32)  

4. SELECTED RESULTS 

For plane strain conditions with vl = v2 = 0.2, eqns (31), (1), (2) and (6) were evaluated 
for selected values of  #2/#1. The strengths of the singularities at the edges of  the plate and 

Table 1. Stress singularities and crack opening displacement 

,u2/#l Yt 72 A,ul/P 

0.2 0.1398-0.0221i 0.8602-0.0221i 0.6437 
0.3 0.1649-0.0302i 0.8351 - 0.0302i 0.4946 
0,4 0.1841-0.0369i 0.8159- 0.0369i 0.4073 
0.5 0.1996-0.0427i 0.8004- 0.0427i 0.3487 
0.6 0.2126-0.0478i 0.7874- 0.0478i 0.3062 
0.7 0.2238- 0.0522i 0.7762- 0.0522i 0.2738 
0.8 0.2336-0.0561i 0.7664-0.0561i 0.2480 
0.9 0.2422- 0.0596i 0.7578-0.0596i 0.2270 

1 0.2500- 0.0627i 0.7500--0.0627i 0.2095 
2 0.3004- 0.0827i 0.6996-0.0827i 0.1206 
3 0.3282- 0.0929i 0.6718 - 0.0929i 0.0856 
4 0.3467- 0.0992i 0.6533-0.0992i 0.0665 
5 0.3602-0.1034i 0.6398-0.1034i 0.0545 
6 0.3706- 0.1064i 0.6294- 0.I064i 0.0462 
7 0.3790- 0.1087i 0.6210-0.1087i 0.0401 
8 0.3859-0.1106i 0.6141-0.1106i 0.0354 
9 0.3917-0.1120i 0.6083-0.1120i 0.0317 

10 0.3968-0.1132i 0.6032-0.1132i 0.0287 
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Fig. 11. Contact stress distribution along the anchor. 

the normalized crack opening displacement at the middle of the anchor are presented in 
Table 1. It is observed that the boundary conditions assumed along the cut lead to two 
"oscillating singularities", which predict interpenetration of material, as discussed by Com- 
ninou and Dundurs (1980). While it is beyond the scope of this paper, this contradiction 
can be avoided by requiring that certain inequalities be incorporated into the formulation, 
as was done for interface cracks in a series of papers by Comninou and Dundurs (Comninou, 
1977a,b, 1978; Comninou and Dundurs, 1979a,b, 1980; Dundurs and Comninou, 1979). 
They introduced contact zones of length c at the tips of an interface crack of length 2l and 
found that, for tensile loading, ( l - c ) / l  is of the order of 10-4. Moreover, the global features 
of  the stress field were found to be practically the same as those of the interface crack with 
no contact zones. These results suggest that, for the vertically loaded anchor analysed in 
this paper, the analytic solution can be used to study the global features of  the stress field, 
but not the stress distribution in the immediate vicinity of the crack tips. 

As expected the compliance of the anchor decreases as the stiffness of  the lower half- 
plane increases. 

Figures 2-10 are contour plots of the Cartesian stress components, normalized by 
multiplying their values by the half-length of the anchor (which is equal to 1), and dividing 
by the vertical load P. Figures 2, 5 and 8 show, as expected, that as the stiffness of  the 
lower half-plane increases (decreases), the compression in the lower half-plane increases 
(decreases), while the tension in the upper half-plane decreases (increases). Similar trends 
for the magnitudes of the other stress components are observed by comparing Figs 3, 6 and 
9 and Figs 4, 7 and 10. 

The contact stress distribution (6) is shown in Fig. 11. An interesting feature of  the 
solution is that the shear stress needed to satisfy the rigid line boundary conditions is 
relatively small. At first sight is seems that the area under each normal stress distribution 
is not equal to the applied load. It should be noted, however, that the strength of the 
singularity at the tips of the anchor increases with decreasing P2/#1, and that the normal 
stress curves in Fig. 11 cross somewhere within the interval 0.9 < x < 1.0. 
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