
Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

Journal of the Mechanics and Physics of Solids 59 (2011) 178–193
0022-50

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jmps
A theoretical analysis of the breakdown of electrostrictive
oxide film on metal
Yuye Tang �, Roberto Ballarini

Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55455, United States
a r t i c l e i n f o

Article history:

Received 2 September 2010

Received in revised form

19 October 2010

Accepted 8 November 2010
Available online 18 November 2010

Keywords:

Passive/anodic oxide films

Breakdown mechanisms

Thermodynamics

Electromechanical effects

Critical electric field strength
96/$ - see front matter & 2010 Elsevier Ltd. A

016/j.jmps.2010.11.002

responding author. Tel.: +1 646 709 1858.

ail address: Yuye.Tang@gmail.com (Y. Tang).
a b s t r a c t

Oxide films that form to protect (passivate) metal substrates from corrosive environ-

ments can be severely damaged when they are subjected to sufficient levels of electric

potential. A continuum mechanics model is presented that captures the intimate

electromechanical coupling of the environment and the film responsible for either

growth or dissolution of the oxide. Analytical solutions, obtained for a finite-thick film

experiencing a uniform electric field, illustrate the existence of a critical combination of

electric field strength, initial film thickness and shape, beyond which the passivating

oxide can become thin enough to undergo dielectric breakdown, or the substrate can

become exposed to the corrosive environment. An experimental procedure is proposed to

measure combinations of material properties required by the theoretical model to predict

the lifetime of the oxide or to avoid the critical state. Illustrative numerical examples are

provided to describe the morphological evolution of oxide films with a periodically wavy

surface.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Passive and/or anodic oxide films that protect a metal substrate from the attack of a corrosive environment may
experience and respond to a considerable electric field. For example, improved corrosion and wear resistance of Aluminum
can be achieved by thickening the natural oxide through the electric field involved in the anodizing process (Wernick et al.,
1987); however, galvanic couples formed in the presence of electrolytes lead to electric potential differences that can
consume the oxide layers and lead to corrosion (McCafferty, 2010). Studies (Kaesche, 1960; Leckie and Uhlig, 1966; Martin
et al., 2007, 2009) showing that the corrosion protection is destroyed at a critical electric potential have provided key insights
for clarifying the breakdown mechanism of oxide films in practical applications. Corresponding physical and computational
models that can characterize and predict the breakdown phenomena, however, are lagging. Using a thermodynamic
framework, Sato (1971) suggested that mechanical failure of the film can result from brittle cracking or plastic deformation
driven by the high levels of electromechanical stress that can be generated by the electric field. Sato’s model is limited by the
assumption of a homogeneous isotropic film pressure, characteristic of a fluid medium and not a solid, and it does not predict
the morphological evolution of the film and the associated stress field. Furthermore, it failed to consider the primary
electromechanical coupling involved, electrostriction in the passive oxide films (Heuer et al., Private Communication). The
degradation of an oxide film produced by the change of its surface shape when subjected to thermal mismatch-induced
residual stress was investigated (Srolovitz, 1989; Yu and Suo, 2000; Liang and Suo, 2001; Yang, 2006). These models, however,
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do not include electromechanical effects. Du and Srolovitz (2004) and Song and Yang (2006) did consider how an imposed
electric field could compromise the morphological stability of an oxide film, but they also did not include the effects of
electrostriction. This paper investigates and demonstrates the possibility that the intimate coupling between the
environment, the electric field and elasticity, changes the morphology of the oxide film in ways that can lead to dielectric
breakdown of the oxide film or exposure of the substrate to the corrosive environment.

The problem under investigation, shown in Fig. 1a, involves an electrostrictive oxide thin film formed on a metal surface
and in contact with an aggressive liquid or vapor environment. The film and the environment are considered as a composite
system with prescribed mechanical and electric boundary conditions. The chemical reaction is assumed to proceed slowly
enough that each phase of the composite remains in a quasi-static equilibrium. Nonequilibrium prevails at the interface
between the two phases, where the exchange of atoms can cause the film to either grow or dissolve. We suggest that the
functionality of the protective coating can be compromised as a result of its thickness being reduced to a critical level, or by its
surface shape changing to a wave of critical amplitude. Be it by depletion of the film, dielectric breakdown or by cracking as a
result of ever increasing stress concentration, the metal substrate will eventually be exposed to the corrosive environment.
These two scenarios would be consistent with the failures observed in experiments (Martin et al., 2007, 2009).

The evolution of the film’s morphology and the stresses that develop within it can be derived using nonequilibrium
thermodynamics (NET), a theoretical framework capable of characterizing transport phenomena in systems that are not in global
equilibrium such as the propagation of a sharp shock front within a domain. The solution procedure is summarized in a step by
step manner in Section 2. The electromechanical governing equations for small deformations, from which one derives the
instantaneous electric and stress fields in the composite system, are presented first. Next, the thermodynamic driving force (TDF)
at the film–environment interface that drives the variation of the film’s instantaneous profile is introduced with associated electric
and stress field input variables. Since none of the TDFs developed for the moving shock problem (Abeyaratne and Knowles, 1990;
Jiang, 1994; James, 2002) can be applied to the problem studied here, the TDF acting at a moving discontinuous surface in quasi-
electrostatic thermoelastic continua (Fig. 2), together with the corresponding equilibrium equations and boundary conditions, are
derived in Appendix A. The derivation of the large deformation case relies on a series of global balance and energy laws. The TDF
acting along the film–environment interface is obtained for small deformations in Section 2 by generalizing the TDF in Appendix A
to include changes in the chemical and surface energies within the closed system. Finally, the film’s morphology is updated by
applying the kinetic relation between the speed of the moving film–environment interface and the TDF that is imported from the
point of view of material science (Yu and Suo, 2000; Liang and Suo, 2001; Prevost et al., 2001). Note that the NET framework
described in Section 2 represents a more general approach for studying the breakdown of oxide films than those currently
available. Finite element formulations could be established for the equations that comprise the model listed here that also consider
the effects of flexoelectric stresses (due to field gradients, strain gradients, or gradients in dielectric properties through the film) as
well as the initiation and growth of cracks or plastic deformation.

In order to clarify the breakdown mechanism and sort out the essential factors determining the corrosion resistance, the
analytical solution for the evolution of the thickness and shape of a film under the assumption of a uniform and constant
electric field is presented in Section 3. The implications of the analytical results, together with illustrative numerical
examples, are explored in Section 4. In particular, the existence is proved of a critical combination of electric field strength,
Fig. 1. An oxide film on a metal substrate in contact with a corrosive environment: (a) schematic view of the entire system, and the in-plane stress states in

the flat film; (b) close-up view of the film with wavy surface.



Fig. 2. Thermoelectroelastic continua with a singular moving surface. The direction of the surface normal NI and ni on the moving surface is from �to +.
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initial film thickness and density of surface roughness that could result in breakdown of the oxide film. An experimental
procedure is proposed to measure certain combinations of material properties associated with the critical conditions. The
results of this study could guide the design of protective coatings.

2. Problem formulation and solution procedure

The film and the environment are considered as two thermoelectroelastic materials separated by a moving interface
(Fig. 1). The chemical reaction at the interface proceeds slowly, so that the composite system is under isothermal and quasi-
static conditions. This enables the derivation of the electric and stress fields in each phase by application of equilibrium
conditions. The resulting simplified nonequilibrium TDF at the interface is affected by current electric and stress field inputs
and drives surface motions of the film through a kinematic relation. The instantaneous profile and internal stresses of the film
can be resolved by repeating the detailed three-step procedure listed below.

Step 1. Solution for the field variables: The field variables in the film and in the environment can be obtained by solving a
boundary value problem, which consists of a set of local equations, jump and boundary conditions (for finite deformation,
Eq. (59a), (59b), (59d), (60a), (60b), (60d), (53) in Appendix A), and a free energy function.

The problem considered here involves small deformation, for which the governing equations are significantly simplified (Kuang,
2009; Jiang and Cao, 2010). Note that certain variables used subsequently are labeled differently than their large deformation
counterparts in Appendix A:f, Di, Ei, qe, we, wint

e represent the electric potential, the electric displacement, the electric field strength,
the free charge density, the free surface charge density on the external surface and that on the interface; bi,sij, ŝ ij, ui,eij, Ti are the body
force density, the stress tensor, the Maxwell stress tensor, the displacement, the strain tensor and the boundary traction on the
external surface; nj is the surface normal. To distinguish the variables in the environment from those in the film, they are denoted by
superscript ‘‘env’’. In the domain defined by the oxide film, the local quasi-electrostatic and stress equilibrium are given by

Di,i ¼ qe, ð1aÞ

sij,jþŝ ij,jþbi ¼ 0, ð1bÞ

where

ŝ ij ¼ E0EiEj�
1

2
E0EkEkdij, ð2Þ

and E0 denotes the permittivity at the state with zero strain. The gradient relations are

Ei ¼�f,i, ð3aÞ

eij ¼
1

2
ðui,jþuj,iÞ: ð3bÞ

On the external surface of the film, the boundary conditions are

Djnj ¼�we, ð4aÞ

ðsjiþ ŝjiÞnj ¼ Ti: ð4bÞ

We assume that the internal stresses and the body force in the environment are negligible. Then, the local equations in the
environment become

Denv
i ,i ¼ qenv

e , ð5Þ



Y. Tang, R. Ballarini / J. Mech. Phys. Solids 59 (2011) 178–193 181
Eenv
i ¼�f

env,i, ð6Þ

and the external boundary condition reduces to

Denv
j nenv

j ¼�wenv
e : ð7Þ

Across the film–environment interface, where nenv
j =�nj, the following jump conditions exist,

Djnjþwint
e ¼Denv

j nj, ð8aÞ

f¼fenv, ð8bÞ

ðsjiþ ŝjiÞnj ¼ ðsenv
ji þŝ

env
ji Þnj � 0: ð8cÞ

The equations above need to be augmented with the constitutive relations. The film is assumed to be homogeneous isotropic elastic
and electrostrictive, and its isothermal electric Gibbs free energy can be expanded as (Kuang, 2009)

g ¼
1

2
Cijklejielk�

1

2
EklEkEl�

1

2
lijklEiEjelkþ . . . , ð9Þ

where Cijkl,Ekl,lijkl are the material coefficients,

Cijkl ¼ GðdikdjlþdildjkÞþldijdkl, ð10aÞ

Ekl ¼ E0dkl, ð10bÞ

lijkl ¼
1

2
a1ðdikdjlþdildjkÞþa2dijdkl: ð10cÞ

a1 and a2 are two independent electrostrictive coefficients. G and l are the Lamé constants, which can be written as functions of
Young’s modulus E and Poisson ratio n, G¼ E=½2ð1þnÞ� and l¼ En=½ð1þnÞð1�2nÞ�. The constitutive relations of the film are then
given by

skl ¼
@g

@elk
¼ 2Geklþleiidkl�

1

2
ða1EkElþa2EiEidklÞ, ð11Þ

Dk ¼�
@g

@Ek
¼ ðE0dklþa1eklþa2ejjdklÞEl: ð12Þ

For the environment with negligible internal stresses, the isothermal Gibbs free energy and constitutive relation are

genv ¼�1
2E

env
0 Eenv

k Eenv
k ð13Þ

and

Denv
k ¼�

@genv

@Eenv
k

¼ Eenv
0 Eenv

k : ð14Þ

Step 2. Determination of TDF: The TDF at the interface corresponding to the above governing equations,F , can be computed
as

F ¼�gk�m� , ð15Þ

where denotes the electromechanical energy density change at the interface. In terms of electric and stress field variables,
when the interface stress vanishes, the expression of the isothermal TDF (Eq. (69)) at a moving interface in quasi-electrostatic
thermoelastic continua reduces to

¼ ðgþnkEkDjnjÞ�ðg
envþnkEenv

k Denv
j njÞ: ð16Þ

The first two terms in Eq. (15) account for the variations of the surface energy and chemical energy in the system (Suo, 1997;
Yu and Suo, 2000; Liang and Suo, 2001; Prevost et al., 2001), where g is the surface energy per unit area (i.e., surface tension) of
the interface,k is twice the mean curvature of the interface, andm is the chemical potential gained per unit volume increase of
the oxide film.

Step 3. Updating of the instantaneous profile: The moving speed of the interface Vn is a function of F . As a first order
approximation, a linear relation is adopted (Suo, 1997; Yu and Suo, 2000; Liang and Suo, 2001; Prevost et al., 2001),

Vn ¼ LF , ð17Þ

where L denotes the interface mobility. The entropy inequality (Eq. (60f)) requires the interface to move in the direction that
increases the total entropy in the system, L40. The explicit forms of L for various problems can be found in the literature
(Suo, 1997; Yu and Suo, 2000; Liang and Suo, 2001; Prevost et al., 2001). For a small time increment, the instantaneous profile
of the film is updated by using Eq. (17).
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3. Analytical solution

This section presents analytical solutions for a perfectly flat film and for a flat film whose surface is perturbed in the form of
a small amplitude undulation. In order to shed light on the breakdown phenomena, we make two assumptions about the
electric field and the internal stress for the perturbed shape example that enable us to derive analytical solutions of the film’s
morphological evolution and its internal stress distribution. The first assumption is that the electric field is uniform, and the
second is that the stress that is applied in the far-field of the film can be prescribed as the stress that develops in the flat film
that is rigidly connected to the substrate. These assumptions result in an uncoupling of the electric and mechanical equations,
and are consistent with the linearized problems treated in this paper. The fully coupled problem requires a computational
framework that is beyond the scope of this paper, and will be the subject of future applications of the developed theory.

The film’s profile is described in a Cartesian coordinate system xi. As shown in Fig. 1a, at time t the oxide thin film occupies
the region, �h0ðtÞrx3rDhðx1,x2; tÞ, where h0(t) is the average film thickness and Dhðx1,x2; tÞ is the surface roughness. The
summation accounts for the instantaneous film thickness h(x1, x2; t),

hðx1,x2; tÞ ¼ h0ðtÞþDhðx1,x2; tÞ: ð18Þ

With Dhðx1,x2; tÞ ¼ 0, Eq. (18) indicates a perfectly flat film. The surface roughness can be decomposed into a series of Fourier
wavevectors. To first order the surface profile is approximated as (Fig. 1b),

Dhðx1; tÞ ¼ aðtÞcosox1, ð19Þ

where a(t) is the instantaneous wave amplitude and o is the perturbation wavenumber. This mathematical representation
could account for an oxide film with periodic indents. A linear perturbation analysis is performed that corresponds to indents
withoa51. Assuming that no electric field is imposed on the environment (Eenv

i =0,i=1,2,3), then no contribution to the TDF
at the film–environment interface is made by the environment. A constant electric field strength E3 is assumed as a first
approximation in the film (E1=E2=0). Electromechanical stresses arise in the film as a result of metal-film mismatch. These
affect the TDF and lead to changes in the thickness and shape of the film. The solution procedure elaborated in Section 2 is
followed next to determine the morphological changes of an initially perfectly flat film and of a film with sinusoidal
morphology (Fig. 1b).

3.1. Flat film

The strain, stress, electric displacement, energy functions and TDF of a perfectly flat film (n1=n2=0, n3=1) are denoted with
superscript ‘‘0’’. Body forces and free charge are absent in the film, and its in-plane dimensions are considered large enough so
that edge effects can be ignored. The metal substrate is considered infinitely thick and is regarded as rigid and perfectly
bonded to the film. Therefore the in-plane strain e0

11 ¼ e0
12 ¼ e0

22 ¼ 0. With these assumptions, application of the equations in
STEP 1 provides

s0
33 ¼�E0E2

3=2, s0
31 ¼ s

0
32 ¼ s

0
12 ¼ 0, s0

11 ¼ s
0
22 ¼

lða1þa2�E0Þ

2ð2GþlÞ
�

a2

2

� �
E2

3,

e0
31 ¼ e

0
32 ¼ 0, e0

33 ¼
ða1þa2�E0ÞE

2
3

2ð2GþlÞ
,

D0
1 ¼D0

2 ¼ 0, D0
3 ¼ ðE0þa1e0

33þa2e0
33ÞE3: ð20a2gÞ

Substitution of the field variables listed above into Eq. (16) in STEP 2, the electromechanical energy density change at the
interface is found

0
¼
E0E2

3

2
þa

E0E2
3

2

� �2

, ð21Þ

wherea is a utility constant comprised of elastic and electrostrictive material parameters. The explicit expression ofa is given
in Appendix C, and the normalized curves for a are depicted in Fig. 3. Since the film is perfectly flat (i.e., k¼ 0), the TDF is
dominated by the chemical energy density and electromechanical energy density, F0 ¼�m� 0. According to the kinetic law
in STEP 3, the film will remain flat and its instantaneous thickness is

h0ðtÞ ¼H0�L mþ
E0E2

3

2
þa

E0E2
3

2

� �2
" #

t, ð22Þ

where H0 is the initial average thickness of the film. The implications of this result are discussed in the next section.

3.2. Film with sinusoidal surface

The profile evolution of a film with periodical undulations is considered next. An analytical solution results from the
following ansatz. The film is perfectly restrained by the metal substrate in the x2 direction, so that e22 ¼ 0. The rigid constraint



Fig. 4. Combined material parameter b as functions of Poisson ratio n and dielectric constant E.

Fig. 3. Combined material parameter a as functions of Poisson ratio n and dielectric constant E.
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induced by the substrate in the x1 direction is approximated by subjecting the film to a far-field mismatch stress along
direction x1, whose magnitude equals the mismatch stress originating in the flat film,s0

11. In addition, the shear strains e12 and
e32 are assumed to be zero, rendering the problem of the plane-strain type. The detailed derivation for the stress field sij and
strain field eij is provided in Appendix B. Substitution of the field variables into Eq. (16) and taking the leading order of
amplitude a leads to

¼
0
þD , ð23Þ

where D is the interfacial electromechanical energy density change associated with introducing the sinusoidal surface,

D ¼�aobw
E0E2

3

2

� �2

cosox1: ð24Þ

b is another utility constant and w is the ðoh0Þ�dependent coefficient. Both explicit forms are defined in Appendix C. The
normalized curves for b are plotted in Fig. 4, and w is shown in Fig. 5. It is important to note that b determines whether the
amplitude of the perturbation approaches the initial thickness of the film and leads to passive exposure of the substrate to
the environment. Specifically, as clarified in Section 4, ifbr0 the film remains flat, while ifb40 the substrate can be exposed.
The normal interfacial migration velocity becomes Vn ¼ h,t½1þðh,1Þ

2
��1=2 ¼ h,t½1þðaosinox1Þ

2
��1=2. Sinceoa51, it reduces to

Vn ¼
@h

@t
¼

dh0

dt
þ

da

dt
cosox1: ð25Þ



Fig. 5. Morphology coefficient w as a function of ðoh0Þ.

Fig. 6. Illustrative examples of profile evolution. x1 and h are on different scales. Solid lines and dotted lines are for case � and case �� in Table 1, respectively.
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The curvature of the sinusoidal surface is also simplified as k¼�h,11½1þðh,1Þ
2
��3=2 ��h,11 ¼ ao2cosox1. Thus the TDF in

STEP 2 is determined as F ¼�m�kg� ¼F 0það�o2gþobwðE0E2
3=2Þ2Þcosox1. Based on the kinetic law in STEP 3, a set of

equations to predict the surface movements is obtained. The evolution of film average thickness can be depicted by Eq. (22).
The amplitude change can then be calculated from

Dhðx1; tÞ ¼ a0exp L �o2gþobw
E0E2

3

2

� �2
 !

t

 !
cosox1, ð26Þ

where a0 is the initial amplitude of the wavy film–solution interface. The form of the equations above are similar to the surface
migration profiles solved by Srolovitz (1989) and others (Yu and Suo, 2000; Yang, 2006), except that the results obtained here
include the effects of electrostriction and express the instantaneous profile explicitly in terms of the applied electric field
strength and utility (combined material) constants. The implications of the result is discussed next.

4. Results and discussion

The analytical solutions derived in Section 3 enable us to capture the evolution of the morphologies of the film and
evaluate the level of internal stresses for given conditions in experiments and in practice. When the amplitude is small, the
time evolution of one surface wave mode is independent of that of the other. The film’s surface profile then can be treated as a
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linear combination of several primary in-plane orthogonal wave modes, and its roughness can be represented as

Dhðx1; tÞ ¼
Xn

k ¼ 1

Dhk ¼
Xn

k ¼ 1

exp L �ðkoÞ2gþðkoÞbwk

E0E2
3

2

� �2
 !

t

 !
ðakcoskox1þbksinkox1Þ, ð27Þ

where ak, bk indicate the wave amplitudes for mode k. wk is the morphology factor for wavenumber ko. Based on Eqs. (22) and
(27), we carry out a normalization procedure, discuss the variables that control the corrosion resistance and propose
experimental measurement method for film’s properties and functional life.

4.1. Normalization

For most oxide films, a40 with a unit of 1/stress, based on which we introduce a set of normalized parameters: the

chemical energy density, m ¼ am; the electrostatic energy density, UE ¼ aðE0E2
3=2Þ; the minimum wavenumber, o ¼ ago;

the instantaneous thickness, h ¼oh; the instantaneous averaged thickness, h0 ¼oh0; the initial thickness, H0 ¼oH0; the

instantaneous surface roughness, Dh ¼oDh; the initial amplitudes, ak ¼oak and bk ¼obk; the time, t ¼ Lgo2t; the
coordinate, xi ¼oxi. Eqs. (22) and (27) can then be simplified to

h0ðtÞ ¼H0�
t

o
ðmþUEþU

2

EÞ ¼H0þxt ð28Þ

and

Dhðx1; tÞ ¼
Xn

k ¼ 1

Dhk ¼
Xn

k ¼ 1

exp �k2þ
kbU

2

E

ao wk

 !
t

 !
ðakcoskx1

þbksinkx1Þ ¼
Xn

k ¼ 1

expðzktÞðakcoskx1þbksinkx1Þ, ð29Þ

where x and zk are defined as the normalized growth rates of film average thickness and film roughness, respectively. The

surface movement of a perfectly flat film can also be described by Eqs. (28) and (29) by setting ak ¼ bk ¼ 0. Therefore, without

loss of generality, we can first determine h0 using Eq. (28), and then substitute its value into Eq. (29) to calculate Dh, and in
turn calculate the normalized instantaneous film thickness through

h ¼ h0ðtÞþDhðx1; tÞ: ð30Þ

4.2. Qualitative analysis for the breakdown mechanism

The variation of h0 (Eq. (28)) is apparent. For a negative change in chemical potential due to an increased volume of oxide
film, mo0, there exists a critical electrostatic energy density,

U
cr

E ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4m

p
2

, ð31Þ

at which the normalized growth rate x is zero. For UE4U
cr

E (UEoU
cr

E ), xo0 (x40) and h0 continues decreasing (growing).
The evolution of Dhk (Eq. (29)), however, is more complex because of its dependence on the instantaneous wk. Simplified

forms for wk can be derived for infinite-thick and ultra-thin films.
For an infinitely-thick film, kh0b1, and wk � 1 (Fig. 5). Hence, the growth rate of surface roughness is reduced to

zk ¼ k2ð�1þikÞ, ð32Þ

where ik ¼ bU
2

E=ðakoÞ. When ik ¼ 1, the amplitude of the surface wave remains constant. For ik41 (iko1), Dhk

monotonically increases (decays). The time evolution of the very thick film could also be considered as the evolution of
a finite-thick film whose surface is the shape of very shallow waves. This corresponds to the early stage of the morphological
evolution. Unless the stress concentration associated with the shallow waves is significant, then this limiting configuration is
not relevant to pitting corrosion.

This study assumes that pitting is a result of surface migration only and focuses on the time evolution of very thin films
with deep indents, which could be regarded as the precursors to dielectric breakdown or substrate exposure. For a finite-thick
film with kh0o1, and a Fourier expansion leads to wk � 2=ðkh0Þ (Fig. 5). Therefore, the growth rate is time-dependent,

zk ¼ k2 �1þ
2ik

kh0

� �
¼ k2 �1þ

2ik

kðH0þxtÞ

 !
: ð33Þ

Various trends are exhibited by Dhk: if ikr0 (i.e., br0), Dhk monotonically decreases; if 0oikokH0=2 and UE ¼U
cr

E , Dhk

monotonically decreases; if ik ¼ kH0=2 and UE ¼U
cr

E , Dhk is invariant; if ik4kH0=2 and U E ¼U
cr

E , Dhk monotonically

increases; if ikZkH0=2 and UE4U
cr

E , Dhk monotonically increases; if 0oikokH0=2 and U E4U
cr

E , Dhk first decreases then



Table 1
The evolution of film average height and roughness. The bottom row and rightmost column are conducive to film breakdown. Numerical examples for � and

�� are shown in Fig. 6.

Case h0 Dhk

ik r0
0oik o

kH0

2
ik ¼

kH0

2
ik 4

kH0

2

U EoU
cr

E
m k k k m then k

U E ¼U
cr

E
Unchange k k Unchange m

U E4U
cr

E
k k k then mð�Þ m m ð��Þ
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increases; if ik4kH0=2 and UEoU
cr

E , Dhk first increases then decreases; if 0oikrkH0=2 and UEoU
cr

E , Dhk monotonically

decreases.
The evolutions of h0 and Dhk for an ultra-thin film, summarized in Table 1, suggest that oxide films could break down if

either U E4U
cr

E or ik4kH0=2. The results are intuitive; the former is associated with complete depletion of the film, and the
latter with wearing away of the film in periodic locations. In experimental measurements (Martin et al., 2007, 2009), the two
criteria may be associated with the breakdown potentials for transpassive dissolution and pitting corrosion. Failure can be
mitigated if UErU

cr

E and ikri1rH0=2. For given conditions in real practice, these two critical conditions together could
determine the breakdown electric field strength, which is written explicitly as

ð1Ecr
3 Þ

2
¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4am

p
aE0

, ð34aÞ

ð2Ecr
3 Þ

2
¼

2o2gH0

bE2
0

 !1=2

, ð34bÞ

and

ðEcr
3 Þ

2
¼minfð1Ecr

3 Þ
2,ð2Ecr

3 Þ
2
g: ð35Þ

From the perspective of film design, one can first obtain the critical electric potential field by Eq. (34a) for given properties of
film and corrosive environment, then estimate the allowable minimum film thickness in terms of minimum wavenumbero,
a measure of critical thickness by Eq. (34b) as

Hcr
0 ¼

b
2o2g

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4am

p
a

 !2

: ð36Þ

Eq. (36) indicates that a higher density of undulations, associated with increased surface energy promoting smoothing of the
surface, demands a thinner initial average film thickness to avoid localized pitting.

The results prove that reduction of film thickness followed by either dielectric breakdown or exposure of the substrate to
the environment, is possible. Unfortunately, experimentally measured values of the parameters, g, m, a, and b, are not
available, so that the results presented above can be used only for qualitative insights. However, an experimental procedure
that can in principle be used to measure them is proposed next.

4.3. Experimental measurement method

The instantaneous shape of the film’s surface (Eq. (27)) can also be expanded as complex Fourier series,

hðx1,tÞ ¼
X1

k ¼ �1

qkðko,tÞexpðjkox1Þ, ð37Þ

where the complex wave amplitude is defined by

q0ð0,tÞ ¼ h0ðtÞ,

qkðko,tÞ ¼
1

2
ðak�jbkÞexp L �ðkoÞ2gþðkoÞbwk

E0E2
3

2

� �2
 !

t

 !
,

q�kð�ko,tÞ ¼
1

2
ðakþ jbkÞexp L �ðkoÞ2gþðkoÞbwk

E0E2
3

2

� �2
 !

t

 !
: ð38a2cÞ
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An atomic force microscope (AFM) can be used to scan and quantify the surface topologies at initial time and current time,
h(x1; 0) and h(x1; t), respectively. Then, the complex wave amplitude can be recovered by the Fourier transform,

qkðko,tÞ ¼

Z 1
�1

hðx1; tÞexpð�jkox1Þ dx1: ð39Þ

According to Eq. (38), the ratio of two complex wave amplitudes is a function of the film’s properties,

1

t
ln

qkðko,tÞ

qkðko,0Þ
¼ L �ðkoÞ2gþðkoÞbwk

E0E2
3

2

� �2
 !

: ð40Þ

The film’s elastic constants, E and n, are assumed to be known from other measurements. The utility constants, a andb, can be
expressed in terms of E0 (Appendix C). The four unknown properties, L,m, g and E0, can then be evaluated by Eqs. (22) and (40)
for two different values of E3. Then, the functional life of the coating, or the critical electrical field strength (Eq. (34a)) and the
minimum initial thickness (Eq. (36)) are found.

4.4. Numerical examples

The two illustrative cases defined in Table 1, � and ��, are selected to illustrate the shape change of a finite-thick oxide film
with one cosine wave component. The normalized initial thickness, the normalized initial amplitude and the normalized
growth rates of the average thickness are chosen to be equal, H0 ¼ 0:0628,a1 ¼ 0:00628, and x ¼�0:1. Then i1 ¼ 0:02oH0=2
for � and have i1 ¼ 0:044H0=2 for ��. In both cases, the film is depleted in places, however, pitting corrosion occurs ‘‘later’’ for
� than ��. It is also apparent that the pitting corrosion will occur ‘‘faster’’ for larger ak,bk and smaller x and H0. The real time
scale can be found by t¼ t=ðLgo2Þ. We speculate that the normalized parameters or the time mapping vary in an experiment
(Martin et al., 2007, 2009), and therefore significant improvements in corrosion resistance can be achieved.

5. Conclusion

A continuum framework was presented to analyze the shape changes of protective oxide films subjected to electrostrictive
forces and a corrosive environment. Analytical solutions were found for oxide films subjected to a constant and uniform
electric strength. Instantaneous film profiles were obtained as functions of normalized control variables. The results showed
that under a critical combination of electric field strength, initial average thickness and density of surface roughness, the
finite-thick film can be thinned enough to undergo dielectric breakdown, or be partly depleted that leads to substrate pitting
corrosions. The time mapping and the normalized initial average thickness, initial wave amplitudes, growth rates for average
thickness and roughness, H0, ak, bk, x, ik , are the most significant in terms of corrosion resistance. The properties of the
coating can be measured by the proposed experimental method, by which both the critical combination and the corrosion
resistance can be estimated. The formulation described in the paper can be generalized to include the effects of prestress,
flexoelectric stress, stress concentration, and mechanical failure using the finite element method. In principle the model
presented here can be used to design an immortal passivating film.
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Appendix A. TDF on a singular discontinuity in thermoelectroelastic continua in the presence of quasi-electrostatic field

The TDF acting on a singular discontinuity associated with numerous physical problems has been widely studied.
Abeyaratne and Knowles (1990) derived the driving traction for thermoelastic solids; Jiang (1994) considered the presence of
both electromagnetic and elastic fields, but omitted electromagnetic forces in the linear and angular momentum; James
(2002) established a more comprehensive formulation of the TDF in a shape memory alloy by considering magnetostatic
(magnetization and demagnetization) and elastic fields. In this section, following the same procedure in Abeyaratne and
Knowles (1990) and Jiang (1994), the TDF at a moving singular surface in quasi-electrostatic thermoelastic continua is derived.

A.1. Bodies, deformations and motions

Consider a system S comprised of the two thermoelectroelastic materials shown in Fig. 2. At time t=0, the two materials
that are separated by a singular surface S0 occupying region D0�S0 (i.e., Dþ0 [ D�0 ), which is referred as the reference
configuration. XI denotes the referential (or particle) position of S. At current time t, the interface is denoted by St, and the
current configuration Dt�St (i.e., Dþt [ D�t ) of S can be described by an invertible mapping xi ¼ KiðXK ,tÞ. Then,

FiJ ¼
@KiðXK ,tÞ

@XJ
, J¼ detðFiJÞ, F�1

Ij ¼
@K�1

I ðxk,tÞ

@xj
ð41a;b; cÞ
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represent the deformation gradient, its Jacobian and its inverse matrix. The particle velocity is defined as

vi ¼
@KiðXK ,tÞ

@t
: ð42Þ

The material time derivative operator is

_ð Þ ¼
D

Dt
¼

@

@t
þvk

@

@xk
: ð43Þ

If the singular discontinuity surface moves with a speed ns
k in the current state (Fig. 2), the corresponding velocities of both its

sides in the reference state are

V 7
J ¼ ðn

s
k�v7

k ÞðF
�1
Jk Þ

7 : ð44Þ

The smoothness requirement of the deformation fields, V+
J =V�J =VJ (or JVJJ¼ 0), demands that (Abeyaratne and Knowles,

1990)

JFkJJLJ ¼ 0, JvkJ¼�JFkJJVJ ¼�JFkJJVnNJ , ð45a;bÞ

where LJ is any vector tangent to the singular surface. NJ is the surface normal in reference state, and Vn is the normal
component of VJ (i.e., Vn=VJ NJ). Jð:ÞJ represents the jump ð:Þþ�ð:Þ�.
A.2. Global balance and energy laws

Define a set of true field variables in the current state: f, di, ei, qe, we represent the electric potential, the electric
displacement, the electric field strength, the free charge density, and the free surface charge density; on the external surface
@Dt of S at time t, we=�dini, where ni is the surface normal;r, fi,sij, ŝ ij are the mass density, the body force per unit mass, the
stress tensor and the Maxwell stress tensor; ti ¼ ðsjiþŝjiÞnj denotes the boundary traction on @Dt; up, _r , qi, G, Z, y are the
internal energy density per unit mass, the heat supply rate per unit mass, the heat flux, the total rate of entropy production,
the entropy density per unit mass, and the absolute temperature. These variables satisfy the quasi-electrostatic Gauss and
Faraday laws (Eringen and Maugin, 1990; Harper, 1999),Z

@Dt

dini dA¼

Z
Dt�St

qe dVþ

Z
St

we dA, ð46aÞ

I
@Ct

ei dxi ¼ 0, ð46bÞ

the mass conservation law,Z
Dt�St

r dV ¼ 0, ð47Þ

balance laws of linear and angular momentum (Harper, 1999),Z
Dt�St

rfi dVþ

Z
@Dt

ti dA¼
D

Dt

Z
Dt�St

rvi dV , ð48aÞ

Z
Dt�St

eijkxjðrfkÞ dVþ

Z
@Dt

eijkxjtk dA¼
D

Dt

Z
Dt�St

eijkxjðrvkÞ dV , ð48bÞ

the energy conservation law (McMeeking et al., 2007),

D

Dt

Z
Dt�St

1

2
rviviþrup

� �
dV ¼

Z
Dt�St

r_r dV�

Z
@Dt

qini dAþ

Z
Dt�St

rfivi dVþ

Z
@Dt

tivi dA

�

Z
Dt�St

_fqe dV�

Z
@Dt

_fwe dA�

Z
St

J _fdiJni dA, ð49Þ

and the entropy inequality law (Abeyaratne and Knowles, 1990; Jiang, 1994; Harper, 1999),

G¼
D

Dt

Z
Dt�St

rZ dVþ

Z
@Dt

qini

y
dA�

Z
Dt�St

r_r
y

dV Z0, ð50Þ

where Ct is any surface in the current configuration and @Ct is its line circuit (depicted in Fig. 2). The following equalities apply
to any infinitesimal volume, surface, and line elements in the reference configuration and those in the current configuration,
(Eringen and Maugin, 1990; Harper, 1999),

dV ¼ J dV0, ni dA¼ JF�1
Ji NJ dA0, dxi ¼ FiJ dXJ : ð51a;b; cÞ
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By applying Eq. (51) to Eqs. (46)–(50), the corresponding physical quantities in the reference state denoted by capital letters
are found,

DJ ¼ JF�1
Ji di, EJ ¼ eiFiJ , Qe ¼ qeJ,

R¼ rJ, SJi ¼ JF�1
Jk ski, ŜJi ¼ JF�1

Jk ŝki, QJ ¼ JF�1
Ji qi, ð52a2gÞ

on external surface @D0 of S at initial time,

We ¼�DJNJ , Ti ¼ ðSJiþŜJiÞNJ : ð53a;bÞ

The physical variables, f, fi, up, _r , G, Z, y, are the same in the current and reference configurations. Eqs. (46)–(50) in the
reference state are written asZ

@D0

DJNJ dA0 ¼

Z
D0�S0

Qe dV0þ

Z
S0

We dA0, ð54aÞ

I
@C0

EJ dXJ ¼ 0, ð54bÞ

D

Dt

Z
D0�S0

R dV0 ¼ 0, ð54cÞ

Z
D0�S0

Rfi dV0þ

Z
@D0

Ti dA0 ¼
D

Dt

Z
D0�S0

Rvi dV0, ð54dÞ

Z
D0�S0

eijkxjðRfkÞ dV0þ

Z
@D0

eijkxjTk dA0 ¼
D

Dt

Z
D0�S0

eijkxjðRvkÞ dV0, ð54eÞ

D

Dt

Z
D0�S0

1

2
RviviþRup

� �
dV0 ¼

Z
D0�S0

R_r dV0�

Z
@D0

QJNJ dA0þ

Z
D0�S0

Rfivi dV0þ

Z
@D0

Tivi dA0

�

Z
D0�S0

_fQe dV0�

Z
@D0

_fWe dA0�

Z
S0

J _fDJJNJ dA0, ð54fÞ

G¼
D

Dt

Z
D0�S0

RZ dV0þ

Z
@D0

QJNJ

y
dA0�

Z
D0�S0

R_r
y

dV0Z0, ð54gÞ

where C0 and @C0 (depicted in Fig. 2) are the chosen surface and its line circuit in the reference configuration.

A.3. Generalized Green–Gauss, Reynolds transport and Stokes theorems

In the presence of the singular surface (Fig. 2), the generalized Green–Gauss theorem is (Eringen and Maugin, 1990;
Harper, 1999),Z

@D0

ð:ÞNJ dA0 ¼

Z
D0�S0

ð:Þ,J dV0þ

Z
S0

Jð:ÞJNJ dA0, ð55Þ

where (.) can be a vector component such as DJ or a tensor component such asSJi; the generalized Reynolds transport theorem
takes the following form (Eringen and Maugin, 1990; Harper, 1999),

D

Dt

Z
D0�S0

ð:ÞJ dV0 ¼

Z
D0�S0

@ð:Þ

@t
þðð:ÞvkÞ,k

� �
J dV0�

Z
S0

Jð:ÞJJVn dA0, ð56Þ

where (.) can be a scalar such as r or a vector component such as rvi; the generalized Stokes theorem becomes (Eringen and
Maugin, 1990; Harper, 1999)I

@C0

EJ dXJ ¼

Z
C0�r0

eIJK EK ,JNI dA0þ

Z
r0

JEJJ dXJ , ð57Þ

where r0 is a discontinuous line on surface C0.

A.4. Local equations and jump conditions

Based on Eqs. (43)–(45) and (55), one obtains

�

Z
@D0

_fWe dA0�

Z
S0

J _fDJJNJ dA0 ¼

Z
@D0

@f
@t
þvk

@f
@xk

� �
DJNJ dA0�

Z
S0

@f
@t
þvk

@f
@xk

� �
DJ

����
����NJ dA0
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�

Z
S0

ðns
k�vkÞ

@f
@xk

DJ

����
����NJ dA0 ¼

Z
D0�S0

ð _fDJÞ,J dV0�

Z
S0

Jf,K DJJVnNJNK dA0: ð58Þ

By applying Eqs. (55)–(58) to Eq. (54), and using the postulate of localization Eringen and Maugin (1990), the local
equations in D0�S0 read

DJ ,J ¼ Qe, ð59aÞ

EJ ¼�f,J ði:e:; eIJK EK ,J ¼ 0Þ, ð59bÞ

@r
@t
þðrvkÞ,k

� �
J¼ 0, ð59cÞ

R _vi ¼ ðSJiþŜJiÞ,JþRfi, ð59dÞ

FiK ðSKjþŜKjÞ ¼ ðSjKþŜjK ÞFKi, ð59eÞ

R _up ¼ R_r�QJ ,JþðSJiþŜJiÞvi,J� _EJ DJ , ð59fÞ

R _Zþ
QJ

y

� �
,J�

R_r
y

Z0, ð59gÞ

and the jump conditions across S0 read,

JDJJNJ ¼We, ð60aÞ

JfJ¼ 0, ð60bÞ

JRJVn ¼ 0, ð60cÞ

JRviJVnþJSJiþŜJiJNJ ¼ 0, ð60dÞ

J1
2RviviþRupJVnþJðSJiþŜJiÞviJNJþJEK DJJVnNJNK�JQJJNJ ¼ 0, ð60eÞ

J�RZJVnþ
QJ

y

����
����NJ Z0: ð60fÞ

A.5. The TDF acting at the discontinuous surface

The following equality exists for two variables a and b,

JabJ¼ JaJ/bSþ/aSJbJ, ð61Þ

where /aS denotes the average 1
2ða
þ þa�Þ. By utilizing this identity together with Eqs. (60d) and (45), one can easily prove

(Abeyaratne and Knowles, 1990),

JðSJiþŜJiÞviJNJ ¼ ½�J
1
2 RviviJ�JðSJiþŜJiÞFiKJNK NJþ

1
2RV2

n JFiKFiJJNK NJ�Vn: ð62Þ

Hence, from Eq. (60e), we have

JQJJNJ ¼ ½JRupJ�JðSJiþŜJiÞFiKJNK NJþ
1
2RV2

n JFiK FiJJNK NJþJEK DJJNK NJ �Vn: ð63Þ

We assume that the absolute temperature is continuous across S0, JyJ¼ 0. Then, the total entropy production rate (Eq. (54g))
becomes (Abeyaratne and Knowles, 1990; Jiang, 1994)

G¼GlocþGconþGS0
, ð64Þ

whereGloc represents the entropy production rate generating from local dissipation,Gcon is the entropy production rate due to
heat conduction, and GS0

denotes the entropy production rate arising from moving discontinuous surface. They are written
explicitly as

Gloc ¼

Z
D0�S0

R _ZyþQJ ,J�Rr

y
dV0, ð65aÞ

Gcon ¼�

Z
D0�S0

QJy,J

y2
dV0, ð65bÞ

GS0
¼

Z
S0

�JRZyJVnþJQJJNJ

y
dA0: ð65cÞ



Y. Tang, R. Ballarini / J. Mech. Phys. Solids 59 (2011) 178–193 191
GS0
could be rewritten in terms of the TDF F , the temperature y and the normal velocity Vn of the moving singular surface

(Abeyaratne and Knowles, 1990; Jiang, 1994), that is

GS0
¼

Z
S0

FVn

y
dA0: ð66Þ

By using Eq. (63) and introducing the electric Gibbs free energy density (i.e., electric enthalpy),

g ¼ Rup�RZy, ð67Þ

we obtain the driving force acting at the singular surface,

F ¼ �JRZyJVnþJQJJNJ

Vn
¼ JgdJK�ðSJiþŜJiÞFiKþ

1

2
RV2

n FiKFiJþEK DJJNK NJ : ð68Þ

This format is similar to the expression derived from a different procedure (Maugin and Trimarco, 1997). For a slow
isothermal process, the interia terms in Eq. (60d) and the kinematic energy in Eq. (60e) vanish. Hence, one can easily find

F ¼ JgdJK�ðSJiþŜJiÞFiKþEK DJJNK NJ : ð69Þ

Appendix B. The stress solution of film with a sinusoidal surface

Since constant electric field strength E3 is applied along direction x3 only (Fig. 1b), the Maxwell stresses ŝ ij keep constant
values in the film. The stress equilibriums are simplified,

sij,j ¼�ŝ ij,j ¼ 0 ði,j¼ 1,3Þ: ð70Þ

With e22 ¼ 0, one obtains the plane-strain constitutive relations from Eq. (11),

s11 ¼ 2Ge11þlðe11þe33Þ�
a2E2

3

2
, ð71aÞ

s33 ¼ 2Ge33þlðe11þe33Þ�
ða1þa2ÞE

2
3

2
, ð71bÞ

s13 ¼ 2Ge13, ð71cÞ

s22 ¼ lðe11þe33Þ�
a2E2

3

2
: ð71dÞ

The metal-film mismatch stress is applied in the far-field, which requires

s11 ¼ s0
11 for x1-71: ð72Þ

From Eqs. (4b) and (8c), the traction free boundary and interface conditions reduce to

s11n1þs31n3 ¼ 0�ŝ11n1�ŝ31n3 ¼
E0E2

3

2
n1, ð73aÞ

s13n1þs33n3 ¼ 0�ŝ13n1�ŝ33n3 ¼�
E0E2

3

2
n3: ð73bÞ

For the metal-film interface, n1=0 and n3=�1, we derive

s31 ¼ 0, s33 ¼�
E0E2

3

2
at x3 ¼�h0: ð74a;bÞ

As oa51, n1 ¼�h,1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðh,1Þ

2
q

� aosinox1 and n3 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðh,1Þ

2
q

� 1 on the wavy film–environment interface (Eq. (19)).
Hence, we found

s11ðaosinox1Þþs31 ¼
E0E2

3

2
ðaosinox1Þ, ð75aÞ

s13ðaosinox1Þþs33 ¼�
E0E2

3

2
at x3 ¼Dhðx1; tÞ: ð75bÞ

The plane-strain elastic above can be resolved by introducing a revised Ariy stress function,j, which is related to the Cauchy
stress tensor by

s11 ¼j,33þs0
11, s33 ¼j,11�

E0E2
3

2
, s13 ¼�j,13: ð76a;b; cÞ
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The equilibrium conditions (Eq. (70)) thereupon are satisfied automatically, and the strain compatibility requires

X
4j¼ 0: ð77Þ

For the given cosine wave surface, the general solution for Eq. (77) is found,

j¼ ðC1expð�ox3ÞþC2x3expð�ox3ÞþC3expðox3ÞþC4x3expðox3ÞÞcosox1, ð78Þ

where C1, C2, C3, and C4 are coefficients. Substituting Eq. (78) into Eq. (76), one obtains the stress fields,

s11 ¼ ðC1o2expð�ox3ÞþC2o2x3expð�ox3Þ�2C2oexpð�ox3Þ

þC3o2expðox3ÞþC4o2x3expðox3Þþ2C4oexpðox3ÞÞcosox1þs0
11, ð79aÞ

s33 ¼�ðC1expð�ox3ÞþC2x3expð�ox3ÞþC3expðox3ÞþC4x3expðox3ÞÞo2cosox1�
E0E2

3

2
, ð79bÞ

s13 ¼ ð�C1oexpð�ox3Þ�C2ox3expð�ox3ÞþC2expð�ox3ÞþC3oexpðox3ÞþC4ox3expðox3ÞþC4expðox3ÞÞosinox1:

ð79cÞ

Substituting Eq. (79) into Eqs. (74) and (75), and with oa51, one achieves

ð�C1oexpðoh0ÞþC2oh0expðoh0ÞþC2expðoh0ÞþC3oexpð�oh0Þ�C4oh0expð�oh0ÞþC4expð�oh0ÞÞosinox1 ¼ 0,

ð80aÞ

�ðC1expðoh0Þ�C2h0expðoh0ÞþC3expð�oh0Þ�C4h0expð�oh0ÞÞo2cosox1 ¼ 0, ð80bÞ

ð�C1oþC2þC3oþC4Þosinox1 ¼
E0E2

3

2
�s0

11

� �
aosinox1, ð80cÞ

�ðC1þC3Þo2cosox1 ¼ 0: ð80dÞ

The coefficients C1–C4 are determined by solving Eq. (80)), and are given by

C1 ¼�C3 ¼�
2aoh2

0 s0
11�

E0E2
3

2

� 	
�2�4o2h2

0þexpð2oh0Þþexpð�2oh0Þ
, ð81aÞ

C2 ¼
a s0

11�
E0E2

3
2

� 	
ð1�2oh0�expð�2oh0ÞÞ

�2�4o2h2
0þexpð2oh0Þþexpð�2oh0Þ

, ð81bÞ

C4 ¼
a s0

11�
E0E2

3
2

� 	
ð1þ2oh0�expð2oh0ÞÞ

�2�4o2h2
0þexpð2oh0Þþexpð�2oh0Þ

: ð81cÞ

Substituting Eq. (81) into Eq. (79), one obtains the stress fields in the film. With Eq. (71), the strain fields can be further derived.
Appendix C. Combined material properties and morphology coefficient

Two combined material parameters are defined,

a¼
3a1
E0
þ3a2

E0
�1

� 	
a1
E0
þ

a2
E0
�1

� 	
2ð2GþlÞ

ð82Þ

and

b¼
� 2Ga2

E0
�la1

E0

� 	
�2ðlþGÞ

h i
2Ga2

E0
�la1

E0

� 	
2Gð2GþlÞðGþlÞ

: ð83Þ

In order to determine these properties, we need the values for the permittivity E0 as well as the two electrostrictive parameters a1

and a2. The permittivity is a product of the relative dielectric constant E and the permittivity of free space EV , E0 ¼ EEV . The two
electrostrictive parameters are difficult to measure in experiments, however, they can also be expressed in terms of E and EV based
on a theoretical framework (Shkel and Klingenberg, 1998), a1 ¼�

2
5 ðE�1Þ2EV and a2 ¼ ½�

1
3 ðE�1ÞðEþ2Þþ 2

15 ðE�1Þ2�EV . From
Eq. (82), we derive

a¼ ð3E
2þ4E�2Þð9E2þ2E�6Þ

50ð2GþlÞE2
¼
ð1þnÞð1�2nÞð3E2þ4E�2Þð9E2þ2E�6Þ

50Eð1�nÞE2
: ð84Þ
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Since E41 and 2Gþl40 for most oxide films, we founda40.a is plotted in Fig. 3, which monotonically increases with enlarging
E or decreasing n.

The combined material property b (Eq. (83)) can also be expressed as

b¼
2ð1þnÞ½Eð�1þ4nÞ�ð4�6nÞ�ðE�1Þ

25EE2ð�1þnÞ
½E2ð�1þ4nÞþ2Eð1þnÞþð4�6nÞ�: ð85Þ

For different Poisson ratio, the value of b is depicted in Fig. 4. b is positive when E is small, which turns to negative values for
larger E. The critical dielectric constant Ecr at the turning points first increases then decreases with increasing n.

w is the morphology coefficient as a function of the product oh0 (i.e., the normalized average thickness h0Þ,

w¼ �4oh0þexpð2oh0Þ�expð�2oh0Þ

�2�4o2h2
0þexpð2oh0Þþexpð�2oh0Þ

¼
�4h0þexpð2h0Þ�expð�2h0Þ

�2�4h
2

0þexpð2h0Þþexpð�2h0Þ

: ð86Þ

Fig. 5 depicts the value of w, which is positive for any h0. When h0b1, w� 1. When h051, w� 2=h0 by using Taylor series.
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