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Elastic stress diffusion around a thin corrugated inclusion
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We determine the stress state around a rigid slender body embedded within an infinite elastic medium
when the body is pushed by a force acting along its longitudinal axis or when the body is unloaded but the
medium is stretched at infinity. The problem is formulated in plane elasticity, where the complex variable
method reduces it to an integral equation of Cauchy’s type. If the profile of the inclusion is analytically
representable by a polynomial, the solution is explicit.
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1. Introduction

The problem of finding the state of stress around a rigid inclusion embedded within an infinite elastic
medium is classic. The stresses can be generated either by applying tensions at infinity or by loading
the inclusion by forces or couples. If the inclusion is a sphere or an ellipsoid, the solution is explicitly
representable in terms of ellipsoidal spherical harmonics. The procedure is exposed inLure (1964)
where the author solves the case of an ellipsoidal cavity.

In plane elasticity, when the inclusion is a disk inserted in a hole perforating a plate, the class of
explicit solutions is much larger. If the hole is circular, it is possible to consider various kinds of contact
between the inclusion and the surrounding medium. For example, the contact may be frictionless or
partial.Gladwell (1980) offers a wide account of the technically interesting cases and of the solution
methods. But, in plane elasticity, exact solutions can be found even for inclusions of more general
shape, provided that their boundaries may be conformally mapped into the unit circumference by a
rational complex variable function.Milne-Thomson(1960) offers an elegant and simple procedure for
treating the twisting of a rigid hypotrochoidal core, whose rim is welded to a hypotrochoidal hole.

Here, we study the case of a long but thin inclusion welded to an elastic plane and pushed by a
force P acting along the longitudinal axis. The inclusion is symmetric with respect to this axis, and the
lateral faces are two, symmetrically placed, curves of any shape but subjected to the only restriction
of admitting a Cartesian analytic representation. We write the integral equation describing the problem
and solve it under the assumption that the thickness of the inclusion is very small with respect to its
longitudinal extent. Some particular solutions are illustrated and discussed. The same equation describes
the case in which the inclusion is unloaded but the plate is stressed at infinity.

c© TheAuthor 2011. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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2. The integral equation of the elongated inclusion

Consider an infinite elastic plate of thicknessh and denote its midplane byS (see Fig.1 ). Choose a sys-
tem of Cartesianx, y-axes such that thex-axis is horizontal and they-axis is vertical. Take two points of
abscissae±1 on thex-axis and consider a curve of equationy(x)(−16 x 6 1)(y(x) > 0, y(±1) = 0)
connecting these points, and the curve−y(x) mirror image of the former. The functiony(x) must sat-
isfy the inequality|y(x)| � 1 and must be continuously differentiable along the interval−1 6 x 6 1.
Suppose now that the region−16 x 6 1, |y| � y(x), interior to the two curves is rigid and loaded by
a force of magnitudeP directed along thex-axis. The rigid core defined above introduces a stress state
in the plate, and we want to determine it by exploiting the geometrical conditions|y(x)| � 1 and its
consequent plausible approximations.

As a consequence of the symmetry of the inclusion with respect to thex-axis and the fact thatP acts
along thex-axis, the rigid inclusion will undergo a pure translation in thex-direction and the tractions
at the upper and lower interfaces are symmetric. This simplifies the formulation of the problem for we
can limit ourselves to determining the contact stress on the upper face of the inclusion.

The first consequence of the slenderness of the inclusion is that we may assume that the contact
tractions at the interfacey = ±y(x) to be practically horizontal and analytically defined by two sym-
metric distributions of tangential forces per unit lengthp(y(x)) = p(−y(x)) applied along the upper
and lower face of the inclusion. A second consequence is that, due to the smallness of|y(x)|, the
influence of these forces on the stress and strain state of the elastic infinite region around the inclusion
is not sensibly altered if we replace them by a unique distribution of forces 2p(x) applied along the
segment−1 6 x 6 1 (see Fig.1 ). Extending a terminology used in aerodynamics, the present type of
approximation may be called the ‘airfoil’ theory for inclusions (Szabó, 1964).

The problem is thus reduced to finding the functionp(x) by exploiting the geometric condition that
the displacement state of the inclusion is a simple rigid translation in thex-direction. For this purpose,
we first determine the stress components in an elastic infinite plate generated by a force 2p(x0)dx0
applied along a linear element dx0 containing the pointx0.

At a generic point of coordinatesz = x + iy, the stress state has the form (Grigolyuk & Tolkachev,
1987)

σx + σy = −
1 + ν

2πh
Re
∫ 1

−1

2p(x0)dx0

z − x0
, (2.1)

FIG. 1. Plate with a long but narrow inclusion.
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ELASTIC STRESS DIFFUSION AROUND A THIN CORRUGATED INCLUSION 635

σy − σx + 2i τxy =
1 + ν

4πh

∫ 1

−1
2p(x0)

[
z − x0

(z − x0)2
+

3 − ν

(1 + ν)(z − x0)

]
dx0, (2.2)

whereν is Poisson’s ratio.
Once we have the stresses, for the plane stress condition considered here, the corresponding strains

are given by the constitutive equations

εx =
1

E
(σx − νσy),

εy =
1

E
(σy − νσx),

εxy =
τxy(1 + ν)

E
, (2.3)

whereE is Young’s modulus.
From (2.3), we can derive the strain component,εt , tangential to the curvesy = ±y(x) whose unit

tangent vectors are

nx =
1

√
1 + y′2(x)

, ny = ±
y′

√
1 + y′2(x)

. (2.4)

Theresult is

εt (y(x)) = εx
1

1 + y′2
+ εy

y′2

1 + y′2
+ 2εxy

y′

1 + y′2
, (2.5)

εt (−y(x)) = εx
1

1 + y′2
+ εy

y′2

1 + y′2
− 2εxy

y′

1 + y′2
. (2.6)

Not withstanding the apparent diversity, these two components are equal becauseεxy(y(x)) =
εxy(−y(x)).

Sincethe adhesion along the interface is complete and the inclusion undergoes a rigid displacement
in thex-direction, from (2.5) and (2.6), we can derive the equation

εt (y(x)) = εt (−y(x)) = 0, (2.7)

which,after substitution of (2.3) and (2.1), (2.2), yields an integral equation for determiningp(x).

3. Approximate solution of (2.7)

Equation (2.7) is not explicitly solvable, but, through some approximations, it can be reduced to a
tractable form. In terms ofx, y (2.1) and (2.2) can be written as

σx + σy = −
4(1 + ν)

4πh

∫ 1

−1
p(x0)

x − x0

(x − x0)2 + y2
dx0, (3.1)

σy − σx + 2i τxy =
3 − ν

4πh

∫ 1

−1
2p(x0)

(x − x0) − i y

(x − x0)2 + y2
dx0

+
1 + ν

4πh

∫ 1

−1
2p(x0)

[(x − x0) − i y]3

[(x − x0)2 + y2]2
dx0. (3.2)
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Let us now exploit the assumptions|y(x)| � 1 and thaty(x) is continuously differentiable such that
|y′(±1)| < ∞. Then we make the approximations

(x − x0)
2 + y2 ' (x − x0)

2

[(x − x0) − i y]3 ' (x − x0)
3 − 3i y(x − x0)

2

y = y(x) ' y′(x0)(x − x0) (3.3)

sothat (3.1) and (3.2) may be replaced by

σx + σy ' −
2(1 + ν)

2πh

∫ 1

−1

p(x0)

(x − x0)
dx0, (3.4)

σy − σx + 2i τxy '
3 − ν

2πh

∫ 1

−1

p(x0)(1 − i y′(x0))

(x − x0)
dx0 +

1 + ν

2πh

∫ 1

−1
p(x0)

1 − 3i y′(x0)

(x − x0)
dx0. (3.5)

From(2.3), we derive the corresponding ‘fundamental’ strain combinations (the adjective has been
introduced byMilne-Thomson,1960):

εx + εy =
1

E
(1 − ν)(σx + σy), (3.6)

εy − εx + 2i εxy =
1

E
(1 + ν)(σy − σx + 2i τxy) (3.7)

sothat, after substitution of (3.4), (3.5) and isolation of the single strain components, we obtain

εx = −
(3 − ν)(1 + ν)

2πEh

∫ 1

−1

p(x0)

x − x0
dx0,

εy =
(1 + ν)2

2πEh

∫ 1

−1

p(x0)

x − x0
dx0,

εxy = −
(3 + ν)(1 + ν)

2πEh

∫ 1

−1

p(x0)y′(x0)

x − x0
dx0. (3.8)

Therefore,(2.7) becomes

1 + ν

2πEh

1

1 + y′2(x)

[

−(3 − ν)

∫ 1

−1

p(x0)

(x − x0)
dx0 + (1 + ν)y′2(x)

∫ 1

−1

p(x0)

(x − x0)
dx0

−2(3 + ν)y′(x)

∫ 1

−1

p(x0)y′(x0)

(x − x0)
dx0

]

= 0, (3.9)

which is equivalent to the integral equation

∫ 1

−1

p(x0)

(x − x0)
[−(3 − ν) + (1 + ν)y′2(x) − 2(3 + ν)y′(x)y′(x0)]dx0 = 0. (3.10)
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But (3.10) is an integral equation of Cauchy’s type that is explicitly integrable.
In particular, recalling the assumption|y′(±1)| < ∞, the solution is unbounded at the points±1

and has the form (Grigolyuk & Tolkachev, 1987)

p(x) =
C0√

1 − x2[(3 − ν) + (5 + ν)y′2(x)]
, (3.11)

whereC0 is an arbitrary constant determined by the condition of equilibrium

P =
∫ 1

−1
2p(x)dx. (3.12)

In order to illustrate the result, consider the case in whichy(x) is an arc of parabola of equation
y(x) = ε(1 − x2), whereε is a small constant. Then (3.11) becomes

p(x) =
C0√

1 − x2[(3 − ν) + 4ε2(5 + ν)x2]
(3.13)

andcomputation of integral (3.12) yields (Gradshteyn & Ryzhik, 1965)

C0 =
P

2π

√
(3 − ν)(3 − ν + 4ε2(5 + ν)) (3.14)

so that the complete expression ofp(x) is

p(x) =
P

2π

√
(3 − ν)(3 − ν + 4ε2(5 + ν))

√
1 − x2[3 − ν + 4ε2(5 + ν)x2]

. (3.15)

Notethat forε = 0, when the inclusion reduces to a plane rigid lamina, (3.15) recovers the classical
distribution p(x) = P

2π
√

1−x2
recordedin several treatises on plane elasticity (Grigolyuk & Tolkachev,

1987).

4. The optimal inclusion

Formula (3.11) furnishes us the distribution ofp(x) oncey′(x) is given. But the problem may be in-
verted. Is there a shape of the±y(x) boundaries such thatp(x) has a prescribed distribution? In particu-
lar, is there a pair±y(x) that maximize the total forceP calculated according to (3.12)? Mathematically
formulated, the problem consists in finding a function±y(x) maximizer of the functional

P =
∫ 1

−1
p(x)dx = 2C0

∫ 1

−1

dx
√

1 − x2[3 − ν + (5 + ν)y′2(x)]
(4.1)

with the boundary conditionsy(±1) = 0. The Euler’s equation of the variational problem is

d

dx

[
2(5 + ν)y′(x)

√
1 − x2[3 − ν + (5 + ν)y′2(x)]2

]
= 0 (4.2)

and a first integral of (4.2) is

2(5 + ν)y′(x) = A
√

1 − x2[(3 − ν) + (5 + ν)y′2(x)]2, (4.3)
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where A is a constant. Without proceeding further, it is immediate to recognize that, puttingA = 0,
the solution to (4.3), satisfying the boundary conditionsy(±1) = 0, is y(x) ≡ 0. Thus, we get the
intuitively expected result that the best inclusion is a rectilinear lamina.

But this result may not be satisfactory because, in general, the inclusion is a deep solid with a pre-
scribed volume. Therefore, a more realistic formulation of the problem is that of adding to the problem
of maximizing (3.12) the isoperimetrical restriction

∫ 1

−1
y(x)dx = const= (say)= 1. (4.4)

We apply the method of Lagrange’s multipliers, and, after standard calculations, we obtain the
following Euler’s equation:

d

dx

[
2(5 + ν)y′(x)

√
1 − x2[3 − ν + (5 + ν)y′2(x)]2

]
+ λ = 0 (4.5)

with the boundary conditionsy(±1) = 0. In this case, an explicit solution is not available. But a
reasonable approximation is that of disregarding the termy′2(x) in the denominator of (4.5). After this
simplification, (4.5) becomes

2(5 + ν)

(3 − ν)

d

dx

[
y′(x)

√
1 − x2

]
+ λ = 0 (4.6)

whose general integral is (Gradshteyn & Ryzhik,1965)

2(5 + ν)

(3 − ν)
y(x) = A

(
1

2
x
√

1 − x2 +
1

2
arcsinx

)
+

λ

3

(√
1 − x2

)3
+ B, (4.7)

whereA and B aretwo arbitrary constants. The boundary conditionsy(±1) = 0 imply A = B = 0,
and hence the solution assumes the surprisingly simple form

y(x) = yopt(x) = λ′
(√

1 − x2
)3

(4.8)

having put λ′ = (3−ν)
6(5+ν)λ. The constantλ′ is determined by the isoperimetric condition (4.4), and a

simple integration yields (Gradshteyn & Ryzhik,1965)

1 = λ′
∫ 1

−1

(√
1 − x2

)3
dx =

3

8
πλ′, (4.9)

henceλ′ = 8
3π .

5. A numerical comparison

An instructive indication about the advantage of adopting the profile (4.8) is offered by comparing the
magnitude of the forceP associated to it with the value ofP associated to a parabolic profile like that
described byy(x) = ε(1 − x2) discussedin Section3. In order to do this, we first calculate the area
subtended by this curve, namely

∫ 1
−1 ε(1 − x2)dx = 4

3ε. The curve of equation (4.8) subtending the
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FIG. 2. Optimal force on rigid inclusion.

same area is therefore determined by replacing 1 by4
3ε in the left-hand side of (4.9). The result is that

we must putλ′ = 32
9 πε instead ofλ′ = 8

3π .
If we assignC0, the value given by (3.14), the parabolic profile yields, of course, the result that the

resultant isP. On the other hand, we choose the profile having (4.8), withλ′ = 32
9 πε and consider the

distribution of forces per unit length

popt(x) =
C0√

1 − x2[(3 − ν) + (5 + ν)y′2
opt(x)]

, (5.1)

whereC0 is given by (3.14). Differentiation of (4.8), substitution into (5.1), and successive integration
yields the value

Popt = 2
∫ 1

−1
popt(x)dx = 2

∫ 1

−1

P

2π

√
(3 − ν)[3 − ν + 4ε2(5 + ν)]dx

√
1 − x2[3 − ν + (32

9 π)ε29x2(1 − x2)]

= P

√√
√
√ 3 − ν + 4ε2(5 + ν)

3 − ν + 32
9π2 ε2(5 + ν)

. (5.2)

Since 4> 32
9π2 , we see from (5.2) thatPopt > P for any value ofν

(
− 1 < ν < 1

2

)
, and as shown

in Fig. 2, the discrepancy is remarkable even for small values ofε.

6. The integral equation of an inclusion welded to a stretched plate

The same technique, suitably adjusted, can be used for solving the elastic problem of an elongated
rigid inclusion inserted into an elastic plate subject to a prescribed state of uniform stress at infinity. In
particular, assume that the rigid slender stiffener of Section2 is not loaded by a longitudinal forceP,
but is welded to a plate stressed at infinity by constant stressesσ 0

x , σ 0
y andτ0

xy.
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In abscence of the stiffener, the corresponging strains would be

ε0
x =

1

E
(σ 0

x − νσ 0
y ),

ε0
y =

1

E
(σ 0

y − νσ 0
x ),

ε0
xy =

τ0
xy(1 + ν)

E
(6.1)

andthe strain tangential to the curvesy = ±y(x) would assume the form (cf. (2.5))

ε0
t = ε0

x
1

1 + y′2
+ ε0

y
y′2

1 + y′2
+ 2ε0

xy
y′

1 + y′2
. (6.2)

Thisstrain is prevented by the inclusion that exerts a shear forcep(x0) on the plate and a tangential
strainεt , whereεt is just the left-hand side of (3.9). Since the total tangential strain at the interface is
zero, we have the equationεt + ε0

t = 0, which after use of (3.8) and some simplifications, yields the
following integral equation forp(x0):

1 + ν

2πEh

∫ 1

−1

p(x0)

(x − x0)
[−(3 − ν) + (1 + ν)y′2(x) − 2(3 + ν)y′(x)y′(x0)]dx0

+
1

E
[(σ 0

x − νσ 0
y ) + (σ 0

y − νσ 0
x )y′2(x) + 2τ0

xy(1 + ν)y′(x)] = 0. (6.3)

This is again an equation of Cauchy’s type, but non-homogeneous: therefore, the solution is the sum
of the general integral (3.11) plus a particular integral obtained by a standard procedure (Grigolyuk &
Tolkachev, 1987). The result is

p(x) =
1

[(3 − ν) + (5 + ν)y′2(x)]





C0√

1 − x2
−

2πh

(1 + ν)

1

π2
√

1 − x2

∫ 1

−1

√
1 − x2

0

(x − x0)
[(σ 0

x − νσ 0
y )

+ (σ 0
y − νσ 0

x )y′2(x0) + 2τ0
xy(1 + ν)y′(x0)]dx0





. (6.4)

Thearbitrary constantC0 is now determined by the condition that the resultant of forcesp(x) applied
on the two sides of the inclusion vanishes

∫ 1

−1
2p(x)dx = 0. (6.5)

As an example, ify(x) is an arc of parabola of equationy(x) = ε(1− x2), whereε � 1, (6.5), after
neglection of the terms containingε2 becomes

C0

∫ 1

−1

dx
√

1 − x2
−

2h

π(1 + ν)

∫ 1

−1

dx
√

1 − x2

∫ 1

−1
[(σ 0

x − νσ 0
y ) (6.6)

−4τ0
xy(1 + ν)εx0]

√
1 − x2

0

(x − x0)
dx0 = 0.
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An application of the residuum theory yields the result

∫ 1

−1
[(σ 0

x − νσ 0
y ) − 4τ0

xy(1 + ν)εx0]

√
1 − x2

0

(x − x0)
dx0 (6.7)

= π

[
(σ 0

x − νσ 0
y )x − 4τ0

xy(1 + ν)ε

(
x2 −

1

2

)]
.

But, since a second integration shows that

∫ 1

−1

dx
√

1 − x2

[
(σ 0

x − νσ 0
y )x − 4τ0

xy(1 + ν)ε

(
x2 −

1

2

)]
= 0, (6.8)

weconclude thatC0 = 0, and hence the distribution of the forcesp(x) is

p(x) =
2h

(3 − ν)(1 + ν)
√

1 − x2

[
(σ 0

x − νσ 0
y )x − 4τ0

xy(1 + ν)ε

(
x2 −

1

2

)]
. (6.9)

For ε = 0, we obtain the distribution of forcesp(x) at the interfaces of a plane lamina.
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