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Elastic stress diffusion around a thin corrugated inclusion
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We determine the stress state around a rigid slender body embedded within an infinite elastic medium
when the body is pushed by a force acting along its longitudinal axis or when the body is unloaded but the
medium is stretched at infinity. The problem is formulated in plane elasticity, where the complex variable
method reduces it to an integral equation of Cauchy’s type. If the profile of the inclusion is analytically
representable by a polynomial, the solution is explicit.
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1. Introduction

The problem of finding the state of stress around a rigid inclusion embedded within an infinite elastic
medium is classic. The stresses can be generated either by applying tensions at infinity or by loading
the inclusion by forces or couples. If the inclusion is a sphere or an ellipsoid, the solution is explicitly
representable in terms of ellipsoidal spherical harmonics. The procedure is expdsee i{1964)

where the author solves the case of an ellipsoidal cavity.

In plane elasticity, when the inclusion is a disk inserted in a hole perforating a plate, the class of
explicit solutions is much larger. If the hole is circular, it is possible to consider various kinds of contact
between the inclusion and the surrounding medium. For example, the contact may be frictionless or
partial. Gladwell (1980) offers a wide account of the technically interesting cases and of the solution
methods. But, in plane elasticity, exact solutions can be found even for inclusions of more general
shape, provided that their boundaries may be conformally mapped into the unit circumference by a
rational complex variable functiodMilne-Thomson(1960) offers an elegant and simple procedure for
treating the twisting of a rigid hypotrochoidal core, whose rim is welded to a hypotrochoidal hole.

Here, we study the case of a long but thin inclusion welded to an elastic plane and pushed by a
force P acting along the longitudinal axis. The inclusion is symmetric with respect to this axis, and the
lateral faces are two, symmetrically placed, curves of any shape but subjected to the only restriction
of admitting a Cartesian analytic representation. We write the integral equation describing the problem
and solve it under the assumption that the thickness of the inclusion is very small with respect to its
longitudinal extent. Some particular solutions are illustrated and discussed. The same equation describes
the case in which the inclusion is unloaded but the plate is stressed at infinity.
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2. The integral equation of the elongated inclusion

Consider an infinite elastic plate of thickndsand denote its midplane [§(see Figl). Choose a sys-
tem of Cartesian, y-axes such that the-axis is horizontal and the-axis is vertical. Take two points of
abscissaé-1 on thex-axis and consider a curve of equatipfx)(—1 < x < 1)(y(x) > 0,y(+1) = 0)
connecting these points, and the curvg(x) mirror image of the former. The functiop(x) must sat-

isfy the inequality]y(x)| <« 1 and must be continuously differentiable along the interval< x < 1.
Suppose now that the regiefl < x < 1, |y| < y(X), interior to the two curves is rigid and loaded by

a force of magnitud# directed along th&-axis. The rigid core defined above introduces a stress state
in the plate, and we want to determine it by exploiting the geometrical conditig®$| « 1 and its
consequent plausible approximations.

As a consequence of the symmetry of the inclusion with respect to-thxés and the fact tha® acts
along thex-axis, the rigid inclusion will undergo a pure translation in #adirection and the tractions
at the upper and lower interfaces are symmetric. This simplifies the formulation of the problem for we
can limit ourselves to determining the contact stress on the upper face of the inclusion.

The first consequence of the slenderness of the inclusion is that we may assume that the contact
tractions at the interfacg = +y(x) to be practically horizontal and analytically defined by two sym-
metric distributions of tangential forces per unit lengtfy(x)) = p(—y(x)) applied along the upper
and lower face of the inclusion. A second consequence is that, due to the smallrigss)pfthe
influence of these forces on the stress and strain state of the elastic infinite region around the inclusion
is not sensibly altered if we replace them by a unique distribution of forp€g)Z2applied along the
segment-1 < x < 1 (see Figl). Extending a terminology used in aerodynamics, the present type of
approximation may be called the ‘airfoil’ theory for inclusions (S2al964).

The problem is thus reduced to finding the functjm(ix) by exploiting the geometric condition that
the displacement state of the inclusion is a simple rigid translation ir-ttieection. For this purpose,
we first determine the stress components in an elastic infinite plate generated by agorgehd
applied along a linear elementglcontaining the poinkg.

At a generic point of coordinates= x + iy, the stress state has the for@rigolyuk & Tolkachey
1987)

ox +oy=— (2.1)

1
1+v Re/ 2p(xp)dxo

27h 1 Z—Xo

FiG. 1. Plate with a long but narrow inclusion.
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. 1+v 1 Z— Xo 3—v

wherev is Poisson’s ratio.
Once we have the stresses, for the plane stress condition considered here, the corresponding strains
are given by the constitutive equations

Ex = E(Ux - VUy),

1
&y = E(O'y - UO')(),

1
by = % 2.3)

whereE is Young’s modulus.
From (2.3), we can derive the strain componepttangential to the curveg = +y(x) whose unit
tangent vectors are

1 y H

Theresult is ;
1 12 y/ §

et(Y(X)) = ex 11 y/z + Syl n y,z + 25xyry/2’ (2.5) §

1 /2 y/ %

Et(—y(x)):8xl+y/2 +8y1+ y/z —ngyry/z. (26) ;5

Not withstanding the apparent diversity, these two components are equal bega(ge)) =

exy(—y(X)).
Sincethe adhesion along the interface is complete and the inclusion undergoes a rigid displacement
in the x-direction, from (2.5) and2.6), we can derive the equation

et(Y(x)) = er(=y(x)) =0, 2.7)
which, after substitution 0fZ.3) and 2.1), 2.2), yields an integral equation for determinip¢x).

T10Z ‘'S IsSn

3. Approximate solution of (2.7)

Equation (2.7) is not explicitly solvable, but, through some approximations, it can be reduced to a
tractable form. In terms of, y (2.1) and 2.2) can be written as

41 +v) 1 — X0
__ 7% 1
ox + Oy 4zh 1 p(XO) (X _ Xo)z + ydeOs (3 )
. 3—v [ (X — Xp) — iy
oyt ang = [ 200

1 _ _ivl3
1+v/12 x0) [(x —x0) —iy]

* Zan [(x —x0)2 1+ y2 7

(3.2)
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Let us now exploit the assumptiohg(x)| <« 1 and thaty(x) is continuously differentiable such that
|y’ (£1)| < oo. Then we make the approximations

(X = %0)” + ¥* = (x = X0)?
[(x = X0) = 1¥]° = (x = X0)° — 3iy(x — X0)?
y = y(x) =Y (x0) (X — Xo) (3.3)
sothat 3.1) and 8.2) may be replaced by

2(1+v) [t p(x)

~— A4
Ox + Jy 277,'h 1 (X _ XO) 0> (3 )
- 3—v [ p(x0)(L—iy (%)) 1+v [t 1-3iy'(xo0)
Oy — Ox + 2i Txy = 27h ) (X — Xo) dXO + o7h ) p(XO)WdXO. (35)

From(2.3), we derive the corresponding ‘fundamental’ strain combinations (the adjective has been
introduced byMilne-Thomson,1960):

1
8X—+‘8y = E(l—v)(ax+0'y), (36)
. 1 .
Ey_gx+2|8)(y = E(1+V)(O'y_0'x+2| Txy) (37)

sothat, after substitution of3(4), 3.5) and isolation of the single strain components, we obtain

B-»+v) [t pxo)
X = X
2z Eh _1X—Xo

>

. _(@+v)? [t pxo)
Y™ 2zEh J_1x—x0

dXo ,

G40ty [t ooy o)

By = 27Eh 1 X—Xo (3:8)
Therefore(2.7) becomes
1+v 1 1 p(xo) 2, [t P(x0)
27ER T+ y2(0) |:—(3 —) /_1 % —%0) dxo + (1 +v)Y“(x) /—1 x—x0) dxg
1 /
/ P(X0)Y'(X0) _
—2(3 + U)y (X) /_l deo} = 0, (39)
whichis equivalent to the integral equation
1
/ P [-(B—v) + L+ v)y?() — 2B + v)Y ()Y (x0)]dxo = O. (3.10)
-1 (X —Xo)
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But (3.10) is an integral equation of Cauchy'’s type that is explicitly integrable.
In particular, recalling the assumpti¢y (+1)| < oo, the solution is unbounded at the poirtd
and has the formGrigolyuk & Tolkachey 1987)

Co
p(x) = , (3.11)
VI=Xx[(3=v)+ B+ v)y?(x)]
whereCy is an arbitrary constant determined by the condition of equilibrium
1
P= / 2p(x)dx. (3.12)
-1

In order to illustrate the result, consider the case in whi¢ky) is an arc of parabola of equation
y(x) = ¢(1 — x?), whereg is a small constant. TheB(L1) becomes

Co

Peo V1=X2[(3—v) +4e2(5+ v)x?] (343
andcomputation of integral (3.12) yield&S¢adshteyn & Ryzhik1965)
P
Co= 2—\/(3—1))(3—1) + 462(5+v)) (3.14)
T
so that the complete expressionp) is
P 3—1)(B—v+42565+v
0(X) = VB—v)( 5+v) (3.15)

T 21 VI %23 —v + 425+ v)x?]

Notethat fore = 0, when the inclusion reduces to a plane rigid lamiBal.§) recovers the classical
distribution p(x) = P recordedn several treatises on plane elasticiBrigolyuk & Tolkachey

274/ 1—x2
1987).

4. The optimal inclusion

Formula (3.11) furnishes us the distribution pfx) oncey’(x) is given. But the problem may be in-
verted. Is there a shape of the/(x) boundaries such thait(x) has a prescribed distribution? In particu-
lar, is there a pait-y(x) that maximize the total forcE calculated according to (3.12)? Mathematically
formulated, the problem consists in finding a functibp(x) maximizer of the functional

1 1 dx
P=/ (xdx=ZC/ 4.1
P ) VI= B = + B+ 1)y2(%)] (4-1)
with the boundary conditiong(4+1) = 0. The Euler’s equation of the variational problem is
d [ 26+ v)Y'(x) ] —0 4.2)
dx | vVI=X2[3 — v + (5+ v)y2(x)]

and a first integral 0f4.2) is

26+ )Y (X) = AV1—x2[(3—v) + (5+v)Y?(X)]?, (4.3)
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where A is a constant. Without proceeding further, it is immediate to recognize that, puitiag0,
the solution to 4.3), satisfying the boundary conditiogg+1) = 0, is y(x) = 0. Thus, we get the
intuitively expected result that the best inclusion is a rectilinear lamina.

But this result may not be satisfactory because, in general, the inclusion is a deep solid with a pre-
scribed volume. Therefore, a more realistic formulation of the problem is that of adding to the problem
of maximizing (3.12) the isoperimetrical restriction

1
/ y(x)dx = const= (say)= 1. (4.4)
-1

We apply the method of Lagrange’s multipliers, and, after standard calculations, we obtain the
following Euler’s equation:

d [ 26+ )Y (X) }
dX LVI=x2[3 = v + (54 v)y2(x)]2

with the boundary conditiong(£1) = 0. In this case, an explicit solution is not available. But a
reasonable approximation is that of disregarding the ##x) in the denominator of (4.5). After this
simplification, (4.5) becomes

1=0 (4.5)

26+v) d Y (X)
— A= 4.
) x| g A= (46
whose general integral iSfadshteyn & Ryzhik1965)
3
2(;5 + v)) y(x) = A (%x\/ 1-x2+ % arcsinx) + % (\/ 1- x2) + B, 4.7)
—V

where A and B aretwo arbitrary constants. The boundary conditigrig=1) = O imply A = B = 0,
and hence the solution assumes the surprisingly simple form

Y00 = Yop() = &/ (V1= 2)° 48)

having put 4’ = %i. The constant’ is determined by the isoperimetric conditiof.4), and a

— 66+
simple integration yieldsGradshteyn & Ryzhik1965)

1 3 3
1=z’/l(\/1—x2) dx = S, (4.9)
8
hencel’ = 5.

5. A numerical comparison

An instructive indication about the advantage of adopting the profile (4.8) is offered by comparing the
magnitude of the forc® associated to it with the value &f associated to a parabolic profile like that
described byy(x) = ¢(1 — x?) discussedn Section3. In order to do this, we first calculate the area

subtended by this curve, nameﬁlg(l — x3)dx = %g. The curve of equation4(8) subtending the
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0 0.05 0.1 0.15 0.2 0.25 0.3
FiIG. 2. Optimal force on rigid inclusion.

same area is therefore determined by replacing %ab';n the left-hand side of4.9). The result is that

we must putl’ = 9 27 ¢ instead oft’ =

If we assignCop, the value given byf-{ 14) the parabolic profile yields, of course the result that the
resultant isP. On the other hand, we choose the profile havifi§), with’ = 7[8 and consider the
distribution of forces per unit length

Co
VI-X[(B-v)+ B+ v)YE 0]

Popt(X) = (5.1)

whereCy is given by (3.14). Differentiation of4(8), substitution into¥.1), and successive integration
yields the value

1 1P /B-v)[3—v+4e2(5+v)ldx
Popt = 2 dx=2[ —
opt /—1 Popt(X)dx /_1 27 /1 — X2 X2[3 —v 4+ (%27[)829)(2(1 — X2)]
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3- v+9282(5+v)

Since 4> 25, we see from§.2) thatPypy > P for any value ofv (—1 < v < %) and as shown
in Fig. 2, the dlscrepancy is remarkable even for small values of

6. The integral equation of an inclusion welded to a stretched plate

The same technique, suitably adjusted, can be used for solving the elastic problem of an elongated
rigid inclusion inserted into an elastic plate subject to a prescribed state of uniform stress at infinity. In
particular, assume that the rigid slender stiffener of Se@itnot loaded by a longitudinal force,

but is welded to a plate stressed at infinity by constant streses) andzy),.
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In abscence of the stiffener, the corresponging strains would be

1
0 0 0
ex = —=(oy — vay),

E

0

0 0
ey = E(ay —voy),

- r)9y(1+ V)

Exy = £ (6.1)
andthe strain tangential to the curvgs= +y(x) would assume the form (cf. (2.5))
1 y? y
0_ 0 0
& = 3x1+y,2 +¢ y1+y/2 +28Xy1+y/2. (62)

This strain is prevented by the inclusion that exerts a shear fo(eg) onthe plate and a tangential
strainet, wheregy is just the left-hand side 0f3(9). Since the total tangential strain at the interface is
zero, we have the equatian + eto = 0, which after use 0f%.8) and some simplifications, yields the
following integral equation fop(xp):

1+v [t p(xo) p o
27 ED |y —xg B F AFVYER) = 2@ +1)Y 0y (x0)]dxo

+ 2102~ o) + 09— vod)y?0) + 2%+ 1Y (0] =0, (63)

Thisis again an equation of Cauchy’s type, but non-homogeneous: therefore, the solution is the sum
of the general integral (3.11) plus a particular integral obtained by a standard procedure (Grigolyuk &
Tolkachey 1987). The result is

, ’ _ R,

[(B=v) + (B +v)y2(x)] | V1-x2 (1+V)n2v 1-—x2 (X — Xo)

p(x) =

[(O‘X — va)(,))

+ (ay = va)Y?(x0) + 250, (L +v)Y’ (Xo)]dX0’ (6.4)

Thearbitrary constanCy is now determined by the condition that the resultant of fonges) applied
on the two sides of the inclusion vanishes

1
/ 2p(x)dx = 0. (6.5)
-1

As an example, ify(x) is an arc of parabola of equatigiix) = (1 — x2), wheree < 1, (6.5), after
neglection of the terms containing becomes

b dx 2h 1 dx Loy 6
CO/_l 1—X2 - 77,'(1+\)) /_1 1_X2/—1[(O-X _VO'y) (66)

J1—x2
—4z0 (1+ v)exq] =

dXo =0.

TTOZ ‘'S 1snBny uo 3sanb Aq 1o'sjeuinolpioyxo-jewewi woiy papeojumoq


http://imamat.oxfordjournals.org/

ELASTIC STRESS DIFFUSION AROUND A THIN CORRUGATED INCLUSION 641

An application of the residuum theory yields the result

1 J1=x2
/_ l[(a)(() —voy) —4rd,(1+ v)gxo](x_—XO(;dxo (6.7)

=7z |:(a)? — va)c,))x — 41)9y(1+ v)e (Xz _ %)} .

But, since a second integration shows that

todx 0 0 0 2 1
|7 (o8 = vod - asa e (- 3) | =0 €9
we conclude tha€Cp = 0, and hence the distribution of the forcp&x) is
2h 0 0 0 ( 2 1)]
X) = —voy,)X—4 1+v)e{xc—=1)]|. 6.9
o B-v)L+v)WI—x2 [(ax oy~ Any(L+v) 2 (6.9)

For ¢ = 0, we obtain the distribution of forcg®(x) at the interfaces of a plane lamina.
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